Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T07:01:56.146Z Has data issue: false hasContentIssue false

Selective Radioactive Decontamination employing Dual Stimuli Responsive N-Aza crown ether containing polymer hydrogels

Published online by Cambridge University Press:  01 February 2011

Dario Deli
Affiliation:
Dario.Deli@postgrad.manchester.ac.uk, University of Manchester, OMIC, Manchester, United Kingdom
David J Crouch
Affiliation:
David.J.Crouch@manchester.ac.uk, University of Manchester, OMIC, Manchester, United Kingdom
Kathleen Law
Affiliation:
Kathleen.Doig@manchester.ac.uk, University of Manchester, CRR, Manchester, United Kingdom
Stephen G Yeates
Affiliation:
Stephen.Yeates@manchester.ac.uk, University of Manchester, OMIC, Manchester, United Kingdom
Francis Livens
Affiliation:
francis.livens@manchester.ac.uk, University of Manchester, CRR, Manchester, United Kingdom
Get access

Abstract

We report the synthesis and properties of two different hydrogels based on N-isopropylacrylamide/acrylic acid and copolymers of oligo-ethylene glycol methacrylates incorporating N-Aza crown ethers. Both hydrogels show rapid response to environmental stimuli and their size can be tuned by pH and temperature. Swollen states lead to high adsorption of water and high contact surface area with ions whereas in the collapsed state the material releases water and the ions not selectively retained by the polymer.

Preliminary autoradiography tests show that these materials strongly bind 90Sr and both pH and temperature can be used to fine tune binding selectivity. This results in such materials being promising candidates for use as smart scavenging agents for radioactive decontamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wasikiewicz, J. M.; Mitomo, H.; Seko, N.; Tamada, M.; Yoshii, F. J.; J. App. Poly. Sci., 2007, 104(6), 4015.Google Scholar
2 Demetriou, A.M.; Crouch, D.J.; Batey, H.; Faulkner, S.; Yeates, S.G.; Livens, F.R.; J. Mater. Chem., 2008, 18, 5350.Google Scholar
3 Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P.; Adv. Mat., 2008, 20(14), 27772781.Google Scholar
4 Komarneni, S.; Kozai, N.; Paulus, W. J.; Nature, 2001, 410(6830), 771.Google Scholar
5 Abusafa, A.; Yucel, H.; Separation and Purification Technology 2002, 28(2), 103.Google Scholar
6 Bhaskarapillai, A.; Sevilimedu, N. V.; Sellergren, B.; Industrial & Engineering Chemistry Research, 2009, 48(8), 3730.Google Scholar
7 Bryce, D. L.; Adiga, S.; Elliott, E. K.; Gokel, G. W.; J. Phys. Chem. A, 2006, 110(50), 13568.Google Scholar
8 Tunca, U.; Yagci, Y.; Prog. Poly. Sci., 1994, 19(2), 233.Google Scholar
9 Morris, G. E.; Vincent, B.; Snowden, M. J.; J. Coll. Int. Sci., 1997, 190(1), 198.Google Scholar
10 Zhang, J.; Chu, L.-Y.; Cheng, C.-J.; Mi, D.-F.; Zhou, M.-Y.; Ju, X.-J.; Polymer, 2008, 49(10), 2595.Google Scholar
11 Snowden, M. J.; Thomas, D.; Vincent, B.; Analyst, 1993, 118(11), 1367.Google Scholar
12 Lutz, J.-F.; Akdemir, O.; Hoth, ,; J. Am. Chem. Soc., 2006, 128, (40), 13046.Google Scholar