Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T04:45:42.318Z Has data issue: false hasContentIssue false

SiC Film Deposited by Pulsed Excimer Laser Ablation

Published online by Cambridge University Press:  16 February 2011

R. J. Tench
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
M. Balooch
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
A. L. Connor
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
L. Bernardez
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
B. Olson
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
M. J. Allen
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
W. J. Siekhaus
Affiliation:
Lawrence Livermore National Laboratory Livermore, California 94550
D. R. Olander
Affiliation:
Nuclear Engineering Department, University of California Berkeley, CA 94720
Get access

Abstract

Thin films of β- SiC were grown on Si substrates by excimer laser pulse ablation of bulk SiC. The films were examined by Auger electron, X-ray, and photoelectron spectroscopies. The film was smooth as monitored by scanning electron microscopy. Scanning electron and scanning tunneling microscopy showed inclusions in the deposited SiC film and laser ionization mass analysis detected SiC dimers in the vapor plume emitted from the target.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ryan, C.E., Silicon carbide-1973 (University of South Carolina Press, South Carolina, 1974) p. 651.Google Scholar
2. Oda, M., Ohkubo, T., Ozawa, A., Ohki, S., Kakuchi, M. and Yoshihara, H., to be published.Google Scholar
3. Nishino, S., Powell, J.A., and Will, H.A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
4. Kaplan, R., J. Appl. Phys. 56, 1636 (1984).Google Scholar
5. Liaw, P. and Davis, R.F., J. Electrochem. Soc. 132, 642 (1985).Google Scholar
6. Venkatesan, T., Wu, X.D., Inam, A., and Wachtman, J.B., Appl. Phys. Lett., 52, 1193 (1988).Google Scholar
7. Balooch, M., Olander, D.R., Russo, R.E., Appl. Phys. Lett. 55, 197 (1989).Google Scholar
8. Russo, R.E. and Olsen, B.L., MRS proceedings, Dec. 4 (1989).Google Scholar
9. Sander, P., Kaiser, V., Altebackwinkel, M., Wiedman, L., Benninghaves, A., Sah, R.E. and Koidi, P., J. Vac. Sci. Technol. A 5, 1470 (1987).Google Scholar
10. Olander, D.R., Pure Sc. Appl. Chem., 62 (1990).Google Scholar
11. Koren, G., Gupta, A., Baseman, R.J., Lutwyche, M.I. and Laibowitz, R.B., App. Phys. Lett. 55, 2450 (1989).Google Scholar
12. Olander, D.R., Yagnik, S.K. and Tsai, Ch.H., J. Appl. Phys., 64 2680 (1988).Google Scholar
13. Addaniano, A. and Sprague, J.A., Appl. Phys. Lett. 44, 525 (1984).Google Scholar