Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T04:38:36.705Z Has data issue: false hasContentIssue false

Structural Studies of Submonolayers of Carbon Atoms on Graphite

Published online by Cambridge University Press:  25 February 2011

M. Ge
Affiliation:
University of Hawaii, Department of Physics & Astronomy 2505 Correa Road Honolulu, Hawaii 96822, USA
K. Sattler
Affiliation:
University of Hawaii, Department of Physics & Astronomy 2505 Correa Road Honolulu, Hawaii 96822, USA
J. Xhie
Affiliation:
University of Hawaii, Department of Physics & Astronomy 2505 Correa Road Honolulu, Hawaii 96822, USA
N. Venkateswaran
Affiliation:
University of Hawaii, Department of Physics & Astronomy 2505 Correa Road Honolulu, Hawaii 96822, USA
Get access

Abstract

Submonolayer coverages of carbon adsorbed on highly-oriented pyrolytic graphite were examined by scanning tunneling microscopy under ultra-high vacuum condition. Linear carbon wires were found on atomically flat graphite surfaces. The wires had different thicknesses, from single atomic width to about lnm. The long wires extended to over several hundred nanometers. Two directions, graphite β-β direction and 30° rotated, were preferred for the long wire orientation. Parallel wire alignment, with several nanometers of inter-wire spacings were observed. Carbon particles, from 0.7 to 2 nm in diameter were found to be attached to the carbon wires. Particles from different wires formed parallel linear chains about perpendicular to the wire direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smally, R. E., Nature 318, 162 (1985)Google Scholar
2. Kratschmer, W., Lamb, L. D., Forstiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990)Google Scholar
3. Kroto, H. W., Allaf, A. W., and Balm, S.P., Chem. Rev. 91,1213 (1991)CrossRefGoogle Scholar
4. lijima, S., Nature 354, 56 (1991)Google Scholar
5. Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. B 631, 68, 631 (1992)CrossRefGoogle Scholar
6. Vanderbilt, D., and Tersoff, J., Phys. Rev. Lett. 68, 511 (1992)Google Scholar
7. Rohfing, E. A., Cox, D. M., and Kaldor, A., J. Chem. Phys. 81,3322 (1984)Google Scholar
8. Rohlfing, E. A., J. Chem. Phys. 93, 7851 (1990)Google Scholar
9. Geusic, M. E., Jarrold, M. F., Mcllrath, J. T., Bloomfield, L. A., Freeman, R. R., and Brown, W. L., Z. Phys. D 3, 309 (1986)Google Scholar
10. Tomanek, D., Schluter, M. A., Phys. Rev. Lett. 67, 2331 (1991)Google Scholar
11. Raghavachari, K. and Binkley, J. S., J. Chem. Phys. 87 (4), 2191 (1987)Google Scholar
12. Magers, D. H., Harrison, R. J., and Bartlett, R. J., J. Chem. Phys. 84, 3284 (1986)Google Scholar
13. Ewing, D. W. and Preiffer, G. V., Chem. Phys. Lett. 134,413 (1987)CrossRefGoogle Scholar
14. Ewing, D. W. and Preiffer, G. V., Chem. Phys. Lett. 86, 365 (1982)Google Scholar
15. Bernholc, J. and Philips, J. C., Phys. Rev. B 33, 7395 (1986)Google Scholar
16. Tomanek, D., Louie, S. G., Mamin, H.J., Albraham, D. W., Thomson, R. E., and Ganz, E., Clarke, J., Phys. Rev. B 35, 7790 (1987)Google Scholar
17. Xhie, J., Sattler, K., Muller, U., Venkateswaran, N., and Raina, G., Phy. Rev. B 43, 8917 (1991)Google Scholar
18. Mizes, H. A., and Foster, J. S., Science 244, 559 (1989)CrossRefGoogle Scholar
19. Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S.I., and Quate, C. F., Appl. Phys. Lett. 52, 362 (1988)Google Scholar
20. Rabe, J. P., M.Sano, Batchelder, D., and Kalatchev, A. A., J. Microsc. (Oxford) 152, 573 (1988)Google Scholar
21. Ge, M., Sattler, K., Xhie, J., and Venkateswaran, N., submitted for publicationGoogle Scholar