Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T05:59:18.367Z Has data issue: false hasContentIssue false

Studies of Plasma Etching of High Temperature Superconducting Thin Films

Published online by Cambridge University Press:  21 February 2011

M. R. Poor
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131
C. B. Fleddermann
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131
Get access

Abstract

The fabrication of devices in high-temperature superconducting ceramics will require the development of suitable techniques for patterning thin films of these materials. We report the plasma etching of Y-Ba-Cu-oxide thin films using techniques adapted from the semiconductor industry. The etching reactor consists of a dc hollow cathode discharge using a chlorine/helium mixture as the working gas. The Y-Ba-Cu-oxide films are deposited on alumina substrates using ion-beam sputtering. We have investigated the etching of these films over a broad range of gas pressures, substrate temperatures, and input powers, using both as-deposited and oxygen annealed films. Substrates were held at ground potential to minimize ion bombardment during etching in order to separate the chemical aspects of the etching process from ion-bombardment effects. The etch rate of these films was found to be highly dependent on the substrate temperature, the system pressure, and on whether the films are annealed. Annealed films etch nearly an order of magnitude more slowly than unannealed films. The film stoichiometry, measured using energy dispersive spectroscopy (EDS), varies greatly with temperature. The copper in the films is removed at the lowest temperature, followed by barium and then yttrium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, Shih, I. and Qiu, C. X., Appl. Phys. Lett. 52, 1523 (1988) or R. P. Vasquez, M. C. Foote, and B. D. Hunt. Appl. Phys. Lett. 54, 1060 (1989).Google Scholar
2. Kullmer, R. and Bauerle, D., Appl. Phys. A Solids surf. A 47, 103 (1988).Google Scholar
3. Humphreys, R. G., Satchell, J. S., Chew, N. G., and Edwards, J. A., Appl. Phys. Lett. 54, 75 (1989).Google Scholar
4. Inam, A., Wu, X. D., Venkatesan, T., Ogale, S. B., Chang, C. C., and Dijkkump, D., Appl. Phys. Lett. 51, 1112 (1987).Google Scholar
5. Rothschild, M., Sedlacek, J. H. C., Black, J. G., and Ehrlich, D. J., IEEE Electron Device Letters 9, 68 (1988).Google Scholar
6. Koinuma, H., Takemura, Y., Hashimoto, T., and Fueki, K., Jap. J. Appl. Phys. 27, L652 (1988).Google Scholar
7. Liberts, G., Eyett, M., Bauerle, D., Appl. Phys. A Solids and Surf. A 46, 331 (1988).Google Scholar
8. Gupta, A. and Koren, G., Appl. Phys. Lett. 52, 665 (1988).Google Scholar
9. Zheng, J. P., Kim, H. S., Ying, Q. Y., Barone, R., Bush, P., Shaw, D. T., and Kwok, H. W., Appl. Phys. Lett. 55, 1044 (1989).Google Scholar
10. Hussey, B. W. and Gupta, A., Appl. Phys. Lett. 54, 1272 (1989).Google Scholar
11. Nastasi, M., NATO Study Institute on Structure-Property Relationships in Surface-Modified Ceramics (1988).Google Scholar
12. Harriott, L. R., Polakos, P. A., and Rice, C. E., Appl. Phys. Lett. 55, 495 (1989).Google Scholar
13. Barbour, J. C., Kwak, J. F., Ginley, D. S., and Peercy, P. S., Appl. Phys. Lett. 55, 507 (1989).Google Scholar
14. Matsui, S., Takado, N., Tsuge, H., and Akakawa, K., Appl. Phys. Lett. 52, 69, (1988).Google Scholar
15. DeVries, J. W. L., Dam, B., Heijman, M. G. J., Stollman, G. M., Gijs, M. A. M., Hagen, C. W., and Griessen, R. P., Appl. Phys. Lett. 52, 1904 (1988).Google Scholar
16. Kubaschewski, O., Evans, E. L I. and Alcock, C. B., Metalureical Thermochemistry, 4th Ed. (Pergamon Press, New York, 1979) p. 9.Google Scholar
17. Handbook of Chemistry and Physics, 61st Ed. (CRC Press, 1980) pp. D200– D202.Google Scholar
18. Tarasenkov, D. N. and Kozhmyakov, P. A., J. Gen. Chem. (USSR) 5, 830 (1935).Google Scholar
19. Pustil'nik, A. I., Sakharov, B. A., Sedykh, T. S., and Dubchak, R. V., (USSR) Zh. Fiz. Khim. 44, 2947 (1970).Google Scholar