Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T13:21:17.874Z Has data issue: false hasContentIssue false

Thermal Activation of the Crystallization Kinetics of Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

T. Mohammed-Brahim
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
D. Briand
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
K. Kis-Sion
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
D. Guillet
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
A.C. Salaün
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
O. Bonnaud
Affiliation:
GMV URA-CNRS 1648 Université Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
Get access

Abstract

Solid Phase Crystallization of amorphous silicon films, deposited by the Low Pressure Chemical Vapor Deposition technique, is studied by in-situ monitoring the film conductance. The crystal growth rate VG, deduced from this measurement, was found to be thermally activated. The activation energy E behaviour for films with different doping varying in a great range, from undoped to 4×1019 cm−3, was then deduced. This behaviour, described for the first time in this work, shows a constant E for undoped and weak doping, then a high decrease after a doping value threshold. The undoped films show a decreasing E when the deposition rate increases i.e. when the structure of the amorphous deposited film tends to correspond to the relaxed amorphous network. All these new results are used to introduce a crystallization model based on a crystalline-amorphous double phase and on the charge of defects at the crystal-amorphous interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mohammed-Brahim, T., Sarret, M., Briand, D., Kis-Sion, K. and Bonnaud, O., J. Phys. IV (France) 5, 913 (1995).Google Scholar
2 Bisaro, R., Magariño, J., Zellama, K., Squelard, S., Germain, P. and Morhange, J.F., Phys. Rev. B-31, 3568 (1985).Google Scholar
3 Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
4 Lietoila, A., Wakita, A., Sigmon, T.W. and Gibbons, J.F. J. Appl. Phys. 53, 4399 (1982).Google Scholar
5 Zellama, K., Germain, P., Squelard, S., Bourgoin, J.C., and Thomas, P.A., J. Appl. Phys. 50, 6995 (1979).Google Scholar
6 Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
7 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F. and Fuoss, P. Phys. Rev. B-44, 3702 (1991).Google Scholar
8 Wu, I.W., Lewis, A.G., Huang, T.Y. and Chiang, A., IEEE E.D. Lett. 10, 123 (1989).Google Scholar
9 Batstone, J.L. Phil. Mag. A-67, 51 (1993).Google Scholar
10 Germain, P.J., Paesler, M.A. and Zellama, K., in Cohesive Properties of Semiconductors, under laser Irradiation, ed. Laude, L.D., E-69, (NATO Advanced Study Institute Series Nijhoff, The Hague, 1983), p.506.Google Scholar
11 Williams, J.S. and Elliman, R.G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar
12 Custer, J.S., Thompson, M.O. and Bucksbaum, P.H., Appl. Phys. Lett. 53, 1402 (1988).Google Scholar
13 Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
14 Narayan, J., J. Appl. Phys. 53, 8607 (1982).Google Scholar
15 Spaepen, F. and Turnbull, D., in Laser and Electron Beam Processing of Semiconductor Structure ed. Poate, J.M. and Mayer, J.W. (Academic, New York, 1981) p.15.Google Scholar
16 Bourgoin, J.C. and Asomoza, R., J. Cryst. Growth 69, 489 (1984).Google Scholar