Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-25T14:53:58.722Z Has data issue: false hasContentIssue false

Thermal conductivity of transition metal containing type-I clathrates

Published online by Cambridge University Press:  18 March 2015

M. Ikeda
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
X. Yan
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
L. Prochaska
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
G. Lientschnig
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
R. Svagera
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
M. Waas
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
P. Tomeš
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
A. Prokofiev
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
E. Bauer
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
S. Paschen
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
Get access

Abstract

Concerning a materials ability to convert heat to electrical energy, the electrical power factor S2/ρ as well as the thermal conductivity at elevated temperatures are of special interest. Since Flash experiments measure the thermal diffusivity and standard steady-state heat-flow experiments are inaccurate at elevated temperatures due to radiation errors inherent to this technique, direct and accurate thermal conductivity data on type-I clathrate single crystals at elevated temperatures are scarce in literature. Here we report 3ω thermal conductivity data on single crystalline Ba8Cu5.09Ge40.91 (BCG), La1.23Ba6.99Au5.91Si39.87, and Ce1.06Ba6.91Au5.56Si40.47 in the temperature range between 80 and 330 K, and specific heat data on BCG between 2 and 300 K. The comparison of our room temperature phonon thermal conductivity data (κph) to results on transition metal (TM) free type-I clathrates in terms of the guest free space (Rfree) suggests a stronger dependence of κph on Rfree for the clathrates containing TM elements.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BP Statistical Review of World Energy June 2014 . (2014).Google Scholar
Cahill, D. G. and Pohl, R. O.. Phys. Rev. B 35, 4067 (1987).10.1103/PhysRevB.35.4067CrossRefGoogle Scholar
Cahill, D. G.. Rev. Sci. Instum. 61, 802 (1990).10.1063/1.1141498CrossRefGoogle Scholar
Prokofiev, A., Sidorenko, A., Hradil, K., Ikeda, M., Svagera, R., M.Waas, , Winkler, H., Neumaier, K. and Paschen, S.. Nature Mater. 12, 1096 (2013).10.1038/nmat3756CrossRefGoogle Scholar
Rodriguez-Carvajal, J.. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Satellite Meeting on Powder Diffraction of the XV IUCr Congress, (1990).Google Scholar
Pailhes, S., Euchner, H., Giordano, V. M., Debord, R., Assy, A., Gomes, S., Bosak, A., Machon, D., Paschen, S. and de Boissieu, M.. Phys. Rev. Lett. 113, 025506 (2014).10.1103/PhysRevLett.113.025506CrossRefGoogle Scholar
Euchner, H., Pailhes, S., Nguyen, L. T. K., Assmus, W., Ritter, F., Haghighirad, A., Grin, Y., Paschen, S. and de Boissieu, M.. Phys. Rev. B 86, 224303 (2012).10.1103/PhysRevB.86.224303CrossRefGoogle Scholar
Suekuni, K., Yamamoto, S., Avila, M.A. and Takabatake, T.. J. Phys. Soc. Jpn. 77, 61 (2008).10.1143/JPSJS.77SA.61CrossRefGoogle Scholar
Zeiringer, I., Chen, MingXing, Bednar, I., Royanian, E, Bauer, E., Podloucky, R., Grytsiv, A., Rogl, P. and Effenberger, H.. Acta Mater. 59, 2368 (2011).10.1016/j.actamat.2010.12.033CrossRefGoogle Scholar
Zhang, H., Borrmann, H., Oeschler, N., Candolfi, C., Schnelle, W., Schmidt, M., Burkhardt, U., Baitinger, M., Zhao, J.-T. and Grin, Y.. Inorg. Chem. 50, 1250 (2011).10.1021/ic1016559CrossRefGoogle Scholar
Sales, B. C., Chakoumakos, B. C., Jin, R., Thompson, J. R., Mandrus, D.. Phys. Rev. B 63, 245113 (2001).10.1103/PhysRevB.63.245113CrossRefGoogle Scholar
Nguyen, L. T. K., Aydermir, U., Baitinger, M., Bauer, E., Borrmann, H., Burkhardt, U., Custers, J., Haghighirad, A., Hofler, R., Luther, K. D., Ritter, F., Assmus, W., Grin, Y. and Paschen, S.. Dalton Trans. 39, 1071 (2010).10.1039/B919791PCrossRefGoogle Scholar
Momma, K. and Izumi, F.. J. Appl. Crystallogr. 44, 1272 (2011).10.1107/S0021889811038970CrossRefGoogle Scholar