Hostname: page-component-76dd75c94c-ccc76 Total loading time: 0 Render date: 2024-04-30T07:21:09.524Z Has data issue: false hasContentIssue false

Volatile Liquid Precursors for the Chemical Vapor Deposition (CVD) of Thin Films Containing Alkali Metals

Published online by Cambridge University Press:  10 February 2011

Randy N. R. Broomhall-Dillard
Affiliation:
Harvard University Chemical Laboratories, Cambridge, MA 02138
Roy G. Gordon
Affiliation:
Harvard University Chemical Laboratories, Cambridge, MA 02138
Valerie A. Wagner
Affiliation:
Harvard University Chemical Laboratories, Cambridge, MA 02138
Get access

Abstract

The first volatile, liquid compounds of alkali metals were synthesized and used for the CVD of materials containing alkali metals. Amides of the type MNR1(SiMe2R2) and MN(SiMe2R2)2 [M = Li, Na, K; R1 = t-butyl, t-amyl; R2= ethyl, n-propyl, i-propyl, n-butyl, i-butyl, n-hexyl, n-octyl] were made and characterized. The lithium amides were prepared via the deprotonation of the parent amine using butyl lithium. The sodium and potassium amides were formed by transamination of sodium amide and potassium bis(trimethylsilyl)amide with the parent amines. For example, lithium bis(ethyldimethylsilyl)amide was prepared from butyl lithium and bis(ethyldimethylsilyl)amine and was distilled as a clear, colorless liquid at 122 °C (0.2 Torr) having a viscosity of 37 cP at 40 °C. These alkali metal amides can be used as convenient liquid sources for CVD of mixed metal oxides containing alkali metals, such as the non-linear optical material lithium niobate, lithium-containing materials for battery electrodes, electrochromic tungsten bronzes, and the pyroelectric and ferroelectric material potassium tantalate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For reviews, see Hubert-Pfalzgraf, L. G., Electrochemical Soc. Proc. 97–25, 824 (1998); W. A. Wojtczak, P. F. Fleig and M. J. Hampden-Smith, Adv. Organometallic Chem. 40, 215 (1996); A. A. Drozdov and S. I. Troyanov, Main Group Met. Chem. XIX, 547 (1996); R. E. Sievers, S. B. Turnipseed, L. Huang and A. F. Lagolate, Coord. Chem. Rev. 128, 285 (1993).Google Scholar
2 Osthoff, R. C. and Kantor, S. W., Inorg. Syntheses 5, pp. 5564 (1957).Google Scholar
3 Gordon, R. G., Chen, F., DiCeglie, N. J Jr., Kenigsberg, A., Liu, X., Teff, D. J. and Thornton, J., Mater. Res. Soc. Symp. Proc. 495, pp. 6368 (1998).Google Scholar
4 Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, C. F. and Robertson, J. D., J. Power Sources 43–44, pp. 103110 (1993).Google Scholar
5 Cho, C.-R., Khartsev, S. I., Grishin, A. M. and Lindback, T., Mater. Res. Soc. Proc. 574, pp. 249254 (1999).Google Scholar
6 Beratan, H. R., Udayakumar, K. R., Hanson, C. M., Belcher, J. F. and Soch, K., Mater. Res. Soc. Symp. Proc., in press (Paper BB8.4, Spring 1999 MRS Meeting).Google Scholar
7 Rubin, M., Rottkay, K. von, Wen, S.-J., Ozer, N. and Slack, J., Sol. Energy Mater. Sol.Cells 54, pp. 4957 (1998).Google Scholar
8 Talledo, A. and Granqvist, C. G., J. Appl. Phys. 77, 4655 (1995).Google Scholar
9 Kelly, C. O., Friend, H. D. and Higgins, R., Proc. 13th Annual Battery Conf. On Applications and Advances (California State UniversityLong Beach, 1999), p. 335.Google Scholar
10 Hellman, E. S., Lilienthal-Weber, Z. and Buchanan, D. N. E., MRS Internet J. Nitride Semiconductor Res. 2, 30 (1997); W. Koh, S.-J. Ku and Y. Kim, Mater. Res. Soc. Symp. Proc. 495, pp. 69-72 (1998).Google Scholar
11 Nakada, T., Kume, T. and Kunioka, A., Sol. Energy Mater. Sol. Cells 50, pp. 97103 (1998).Google Scholar