Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T09:53:01.699Z Has data issue: false hasContentIssue false

Voltage Shifts and Defect-Dipoles in Ferroelectric Capacitors

Published online by Cambridge University Press:  10 February 2011

W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
G. E. Pike
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
D. Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
K. Vanheusden
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
H.N. Al-Shareef
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
B. A. Tuttle
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
R. Ramesh
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
J. T. Evans Jr.
Affiliation:
Radiant Technologies Inc., 1009 Bradbury Ave., Albuquerque, New Mexico 87106
Get access

Abstract

We review the processes and mechanisms by which voltage offsets occur in the hysteresis loop of ferroelectric materials. Simply stated, voltage shifts arise from nearinterfacial charge trapping in the ferroelectric. We show that the impetus behind voltage shifts in ferroelectric capacitors is the net polarization, with the net polarization being determined by the perovskite and the aligned defect-dipole components. Some common defect-dipoles in the PZT system are lead vacancy-oxygen vacancy complexes. One way to change the net polarization in the ferroelectric is to subject the PZT capacitor to a dc bias at elevated temperature; this process is spectroscopically shown to align defect-dipoles along the direction of the applied electric field. The alignment of defect-dipoles can strongly impact several material properties. One such impact is that it can lead to enhanced voltage shifts (imprint). It is proposed that the net polarization determines the spatial location of the asymmetrically trapped charge that are the cause for the voltage shifts. An enhanced polarization at one electrode interface can lead to larger voltage shifts since it lowers the electrostatic potential well for electron trapping, i.e., more electron trapping can occur. Defect-dipole alignment is also shown to increase the UV sensitivity of the ferroelectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Megaw, H.D., Acta. Cryst. 5, 739 (1952).Google Scholar
2. Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).Google Scholar
3. Evans, J.T. and Womack, R., IEEE J. Solid State Circuits 23, 1171 (1988).Google Scholar
4. Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., and Schwartz, R.W., J. Appl. Phys. 76, 4305 (1994).Google Scholar
5. Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., and Evans, J.T., Appl. Phys. Lett. 66, 484 (1995).Google Scholar
6. Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Ramesh, R., and Evans, J.T. Jr., Appl. Phys. Lett. 67, 866 (1995).Google Scholar
7. Mihara, T., Watanabe, H., and Arajuo, C.A. Paz de, Jpn. J. Appl. Phys. 32, 4168 (1993).Google Scholar
8. Lee, J., Ramesh, R., Keramidas, V.G., Warren, W.L., Pike, G.E., and Evans, J.T. Jr., Appl. Phys. Lett. 66, 1337 (1995).Google Scholar
9. Lambeck, P.V. and Jonker, G.H., J. Phys. Chem. Solids 47, 453 (1986).Google Scholar
10. Schulze, W.A. and Ogino, K., Ferroelectrics 87, 361 (1988).Google Scholar
11. Arlt, G. and Neumann, H., Ferroelectrics 87, 109 (1988).Google Scholar
12. Lohkamper, R., Neumann, H., and Arlt, G., J. Appl. Phys. 68, 4220 (1990).Google Scholar
13. Pugh, R.D., Sabochick, M. J. and Luke, T.E., J. Appl. Phys. 72, 1049 (1992).Google Scholar
14. Yoo, I.K., Desu, S.B., and Xing, J., MRS Symp. Proc. 310, 165 (1993).Google Scholar
15. Hagemann, H.-J., J. Phys. C 11, 3333 (1978).Google Scholar
16. Lambeck, P.V. and Jonker, G.H., J. Phys. Chem. Sol. 47, 453 (1986).Google Scholar
17. Fukami, T. and Fujii, S., Jpn. J. Appl. Phys. 24, 632 (1985).Google Scholar
18. Miller, S.L., Schwank, J.R., Nasby, R.D., and Rodgers, M.S., J. Appl. Phys. 70, 2849 (1991).Google Scholar
19. Assink, R.A. and Schwartz, R.W., Chem. Mater. 5, 511 (1993).Google Scholar
20. Warren, W.L., Dimos, D., Pike, G.E., Vanheusden, K., and Ramesh, R., Appl. Phys. Lett. 67, 1689 (1995).Google Scholar
21. Robels, U., Schneider-Stormann, L., and Arlt, G., Ferroelectrics 168, 301 (1995).Google Scholar
22. Smyth, D.M., Ferroelectrics, 116, 117 (1991).Google Scholar
23. Eror, N.G. and Balachandran, U., Solid State Commun. 44, 1117 (1982).Google Scholar
24. Siegel, E. and MUller, K.A., Phys. Rev. B 20, 3587 (1979).Google Scholar
25. Siegel, E. and Miller, K. A., Phys. Rev. B 19, 109 (1979).Google Scholar
26. Possenride, E., Jacobs, P., and Schirmer, O.F., J. Phys. Conden. Matter 4, 4719 (1992).Google Scholar
27. Berney, R.L. and Cowan, D.L., Phys. Rev. B 23, 37 (1983).Google Scholar
28. Warren, W.L., Pike, G.E., Vanheusden, K., Dimos, D., Tuttle, B.A., and Robertson, J., J. Appl. Phys. 79 xxxx (1996).Google Scholar
29. Dimos, D. and Warren, W.L., J. Appl. Phys., submitted.Google Scholar
30. Warren, W.L., Vanheusden, K., Dimos, D., Pike, G.E. and Tuttle, B.A., J. Am. Ceram. Soc. 78, 536 (1996).Google Scholar
31. Lewis, G.V., Catlow, C.R.A., and Casselton, R.E.W., J. Am. Ceram. Soc. 68, 555 (1985).Google Scholar
32. Waser, R. M., J. Am. Ceram. Soc. 72, 2234 (1989).Google Scholar
33. Schaffrin, C., Phys. Stat. Sol. A 35, 79 (1976).Google Scholar
34. Waser, R., Baiatu, T., and Hardtl, K.-H., J. Am. Ceram. Soc. 73, 1645 (1990).Google Scholar
35. Minford, W.J., IEEE TCHMT, CHMT–5, 297 (1982).Google Scholar
36. Takahashi, S., Ferroelectrics 41, 143 (1982).Google Scholar
37. Smyth, D.M., Prog. Solid St. Chem. 15, 145 (1984).Google Scholar
38. Raymond, M.V., Chen, J., and Smyth, D.M., Integ. Ferroelectrics 5, 73 (1994)Google Scholar