Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T03:08:45.887Z Has data issue: false hasContentIssue false

Adhesion of ZrN And SiC Thin Films on Titanium and Nickel Alloys

Published online by Cambridge University Press:  10 February 2011

K. A. Gruss
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919, webber@mat.mte.ncsu.edu
R. D. James
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919, webber@mat.mte.ncsu.edu
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919, webber@mat.mte.ncsu.edu
Get access

Abstract

Chemically inert ceramic coatings are currently being investigated to extend the lifetime of metallic components operating in severe environments. Polycrystalline ZrN and amorphous SiC coatings were deposited by cathodic arc evaporation and by PACVD, respectively, on Titanium Grade 12 and Incoloy 825 metal substrates. The structure of the coatings was verified by SEM and XRD. Residual stress analyses were performed on the ZrN coatings via XRD using the sin2 φ method. Compressive stresses of 3.7 GPa and 2.5 GPa were calculated in the ZrN on the Incoloy and Titanium substrates, respectively. Studies of the interfacial chemistry via AES revealed chemically abrupt interfaces. Scratch tests were employed to assess the critical load for interfacial failure and fracture mechanisms for the various coating systems. Critical loads, charaterized by a kidney-shaped crack patterns found in the scratch tracks, occurred at 12 N for ZrN on Titanium and 20 N for ZrN on Incoloy. Interfacial failure of SiC on Titanium was dominated by brittle fracture of the SiC coating at 3N loads.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hintermann, H. E., J. Vac. Sci. Technol. B 2, 816 (1984).Google Scholar
2. Bhat, D. G. and Woerner, P. F., J. Metals 38, 68 (1986).Google Scholar
3. Sproul, W. D., Thin Solid Films 107, 141 (1983).Google Scholar
4. Johnson, P. C. and Randhawa, H., Surf. Coat. Technol. 33, 53 (1987).Google Scholar
5. Beck, U., Reiners, G., Urban, I., Jehn, H. A., Kopacz, U. and Schack, H., Surf. Coat. Technol. 61, 215 (1993).Google Scholar
6. Sue, J. A. and Troue, H. H., Surf. Coat. Technol. 49, 31 (1991).Google Scholar
7. Noyan, I. C. and Cohen, J. B., Residual Stress. Measurment by Diffraction aand Interpretation. (Springer-Verlag, New York, NY, ed., 1987), p. 117.Google Scholar
8. Dölle, H., J. Appl. Cryst. 12, 489 (1979).Google Scholar
9. Perry, A. J., Georgson, M. and Sproul, W. D., Thin Solid Films 157, 255 (1988).Google Scholar
10. Li, X. Y., Li, G. B., Wang, F. J., Ma, T. C. and Yang, D. Z., Vacuum 43, 653 (1992).Google Scholar
11. Kattamis, T. Z., Bhansali, K. J., Levy, M., Adler, R. and Ramalingam, S., Mater. Sci. Eng. A 161, 105 (1993).Google Scholar
12. Bull, S. J., Surf. Coat. Technol. 50, 25 (1991).Google Scholar
13. Kattamis, T. Z., J. Adhes. Sci. Technol. 7, 783 (1993).Google Scholar
14. Perry, A. J., Surf. Eng. 3, 183 (1986).Google Scholar
15. Blau, P. J. (private communication).Google Scholar
16. Perry, A. J., Thin Solid Films 78, 77 (1981).Google Scholar
17. Bull, S. J., Mat. High Temp., in press (1995).Google Scholar
18. Martin, P. J., Netterfield, R. P., McKenzie, D. R., Falconer, S., Pacey, C. G., Thomas, P. and Sainty, W. G., J. Vac. Sci. Technol. A 5, 22 (1987).Google Scholar
19. Sanders, D. M., Boercker, D. B. and Falabella, S., IEEE Trans. Plasma Sci. 18, 883 (1990).Google Scholar
20. Sathrum, P. and Coll, B. F., Surf. Coat. Technol. 50, 103 (1992).Google Scholar
21. Coll, B. F., Sathrum, P., Fontana, R., Peyre, J. P., Duchateau, D. and Benmalek, M., Surf. Coat. Technol. 52, 57 (1992).Google Scholar
22. Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures. (John Wiley & Sons, New York, NY, Second ed., 1974), p. 656.Google Scholar
23. James, R. D., Paisley, D. L., Gruss, K. A., Parthasarthi, S., Tittman, B., Horie, Y. and Davis, R. F.,, Proceedings of the Materials Research Society Symposium on Covalent Ceramics III: Science and Technology of Non-Oxides, Boston, MA (Materials Research Society, November 27 - December 1, 1995).Google Scholar
24. Schutz, R. W., Hall, J. A. and Wardlaw, T. L.,, Proceedings of the 30th Anniversary Symposium of Japan Titanium Society, Kobe, Japan (Komiyama Printing Co., 1983).Google Scholar
25. Product Handbook, Inco Alloys International (Huntington, WV, 1988).Google Scholar
26. Shackelford, J. F. and Alexander, W., Eds., The CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, FL, 1992).Google Scholar
27. Argon, A. S., Gupta, V., Landis, H. S. and Cornie, J. A., Mater. Sci. Eng. A. 107, 41 (1989).Google Scholar
28. Kattamis, T. Z., Chen, M., Skolianos, S. and Chambers, B. V., Surf. Coat. Technol. 70, 43 (1994).Google Scholar
29. Burnett, P. J. and Rickerby, D. S., Thin Solid Films 154, 403 (1987).Google Scholar
30. James, R. D., Gruss, K. A. and Davis, R. F., unpublished work.Google Scholar
31. Bull, S. J. and Rickerby, D. S., Surf. Coat. Technol. 42, 149 (1990).Google Scholar
32. Tanikella, B. V., Gruss, K. A., Davis, R. F. and Scattergood, R. O., Surf. Coat. Technol. (in press).Google Scholar