Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T03:46:48.086Z Has data issue: false hasContentIssue false

Adsorption of Amelogenin Nanopheres onto Charged Surfaces, A Model for Tooth Enamel Matrix Re-construction

Published online by Cambridge University Press:  17 March 2011

Moradian-Oldak J.
Affiliation:
Center for Craniofacial Molecular Biology, University of Southern California, LA, CA, USA
Gergely C.
Affiliation:
INSERM U 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France
Bouropoulos N.
Affiliation:
Department of Material Science, University of Patras, GR-26500 Patras, Greece
Cuisinier F.J.G.
Affiliation:
INSERM U 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France
Get access

Abstract

Amelogenins are hydrophobic proteins that constitute more than 90% of the secretory stage enamel matrix. The assembly of amelogenin into nanospheres has been postulated to be a key factor in controlling the structural organization of the enamel extracellular matrix framework, which provides the scaffolding for the elongated and oriented growth of enamel apatite crystals. To get insight into the structure and function of amelogenin in controlling the process of crystal growth we have utilized two different approaches to investigate adsorption of amelogenin nanospheres onto charged surfaces: A) analysis of adsorption of amelogenin onto hydroxyapatite crystals by means of Langmuir Model for protein adsorption. B) analysis of amelogenin mono or multi-layer formation by sequential adsorption process onto auto-assembled polyelctrolytes films. Our data indicate that amelogenin nanospheres adsorb onto the surface of apatite crystals as binding units with defined adsorption sites. We found that amelogenin nanospheres are negatively charged and a monolayer of these nanospheres adsorbed in an irreversible way on positively ending polyelectrolyte multilayers most likely through electrostatic interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kerebel, B., Dacullsi, G. and Kerebel, L.M. (1979) J. Dent. Res. 58, 844850.CrossRefGoogle Scholar
2. Fincham, A.G, Moradian-Oldak, J., and Simmer, J.P. (1999) J Struct. Biol. 122, 320327.Google Scholar
3. Shore, R. C., Robinson, C., Kirkham, J., and Brookers, S.J. (1995). “Structure of developing enamel.” In: Dental Enamel Formation to Destruction, Robinson, C., Kirkham, J. and Shore, R. C. (eds.), pp. 135150. (CRC Press, New York).Google Scholar
4. Moradian-Oldak, J., Simmer, J.P., Lau, E.C., Sarte, P. E, Slavkin, H.C., and Fincham, A.G., (1994) Biopolymers 34, 13391347.CrossRefGoogle Scholar
5. Fincham, A.G., Moradian-Oldak, J., Simmer, J.P., Sarte, P.E., Lau, E.C., Diekwisch, T. and Slavkin, H.C. (1994) J. Struct. Biol. 112, 103109.CrossRefGoogle Scholar
6. Fincham, A.G., Moradian-Oldak, J., Diekwisch, T.G.H., Lyaruu, D.M., Wright, J.T., Bringas, P. and Slavkin, H.C., (1995) J Struct. Biol. 115, 50.CrossRefGoogle Scholar
7. Moradian-Oldak, J., (2001) Matrix Biol. 20, 239.CrossRefGoogle Scholar
8. Iijima, M., Moriwaki, Y., Wen, H.B., Fincham, A.G. and Moradian-Oldak, J. (2002) J. Dent. Res., 81, 69.CrossRefGoogle Scholar
9. Wen, H.B., Moradian-Oldak, J. and Fincham, A.G., (2000) J. Dent. Res. 79, 1902.CrossRefGoogle Scholar
10. a)Bouropoulos, N. and Moradian-Oldak, J., (2003)Calcif. Tiss. Int. 72, 599603. b) J. Moradian-Oldak (2004) Calcif. Tiss. Int. 74,124-125.CrossRefGoogle Scholar
11. Simmer, J.P., Lau, E.C., Hu, C.C, Bringas, P., Santos, V., Aoba, T.. Lacey, M., Nelson, D., Zeichner-David, M., Snead, M.L., Slavkin, H., and Fincham, A.G. (1994) Calcif. Tissue Int. 54, 312319.CrossRefGoogle Scholar
12. Decher, G., (1997) Science 277, 1232.CrossRefGoogle Scholar
13. Picart, C., Ladam, G., Senger, B., Voegel, J.-C., Schaaf, P., Cuisinier, F.J.G. and Gergely, C. (2001) Journal of Chemical Physics, 115, 1086.CrossRefGoogle Scholar
14. Tiefenthaler, K. and Lukosz, W.J. (1989) Opt. Soc. Am. B. 6(2):209220.CrossRefGoogle Scholar
15. Picart, C., Gergely, C., Arntz, Y., Schaaf, P., Voegel, J-C, Cuisinier, F.J.G., Senger, B. (2004) Biosens. Bioelectron. in press.Google Scholar
16. Kresak, M., Moreno, E., Zahradnik, R., Hay, D., (1977) J Colloid Interface Sci. 59, 283292.CrossRefGoogle Scholar
17. Moradian-Oldak, J., Bouropoulos, N., Wang, L. and Gharakhanian, N., (2002) Matrix Biol. 21,197205.CrossRefGoogle Scholar
18. Wallwork, M. L., Kirkham, J., Zhang, J., Smith, D.A., Brookes, S.J., Shore, R.C., Wood, S.R., Ryu, O., Robinson, C. (2001) Langmuir, 17, 25082513.CrossRefGoogle Scholar
19. Gergely, C., Moradian-Oldak, J. and Cuisinier, F.J.G. (in preparation).Google Scholar
20. Ladam, G., Schaad, P., Voegel, J.-C., Schaaf, P., Decher, G., Cuisinier, F.J.G., (2000) Langmuir 2000, 16, 1249 CrossRefGoogle Scholar
21. Oldak, J. Moradian, Leung, J. W., and Fincham, A.G. (1998) J. Struct. Biol. 122, 320327.CrossRefGoogle Scholar