Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T17:55:49.810Z Has data issue: false hasContentIssue false

Advances in Cnx Nanotube Growth

Published online by Cambridge University Press:  15 February 2011

J. Liu
Affiliation:
Center for Nanotechnology and Department of Physics, Wake Forest University, Winston-Salem NC, U.S.A.
R. Czerw
Affiliation:
Center for Nanotechnology and Department of Physics, Wake Forest University, Winston-Salem NC, U.S.A.
S. Webster
Affiliation:
Center for Nanotechnology and Department of Physics, Wake Forest University, Winston-Salem NC, U.S.A.
D.L. Carroll
Affiliation:
Center for Nanotechnology and Department of Physics, Wake Forest University, Winston-Salem NC, U.S.A.
J. H. Park
Affiliation:
School of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151-747, Korea
Y. W. Park
Affiliation:
School of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151-747, Korea
M. Terrones
Affiliation:
Advanced Materials Department, IPICyT, Av. Venustiano Carranza 2425-A Colonia Bellas Lomas, 78210 San Luis Potosi, SLP, Mexico
Get access

Abstract

Carbon nanotubes containing substitutionally “doped” nitrogen were synthesized using injection chemical vapor deposition methods. X-ray photoelectron spectroscopy comparisons between materials grown with different nitrogen sources suggest that the nitrogen content of the nanotubes has little correlation with the total nitrogen content of the “dopant” gas. Tunneling microscopy and spectroscopy do, however, confirm that drastic distortions occur within the graphene lattice as the nitrogen is substituted. Further, donor states are clearly identifiable within the density of electronic states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991)Google Scholar
2. Teter, D. M., Hemley, R. J., Science 271, 53 (1996)Google Scholar
3. Miyamoto, Y., Cohen, M. L., Louie, S. G., Solid State Commun. 102, 605 (1997)Google Scholar
4. Terrones, M., Grobert, N., Olivares, J., Zhang, J. P., Terrones, H., Kordatos, K., Hsu, W. K., Hare, J. P., Kroto, H. W., Prassides, K., Cheetham, A. K., Townsend, P. D., Walton, D. R. M., Nature 388, 52 (1997)Google Scholar
5. Terrones, M., Kamalakaran, R., Seeger, T., Rühle, M., Chem. Commun. 23, 2335 (2000)Google Scholar
6. Suenaga, K., Yudasaka, M., Colliex, C., Iijima, S., Chem. Phys. Lett. 316, 365 (2000)Google Scholar
7. Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W.–K., Terrones, H., Zhu, Y.-Q., Hare, J. P., Reeves, C. L., Cheetham, A. K., Rühle, M., Kroto, H. W., Walton, D. R. M., Adv. Mater. 11, 655 (1999)Google Scholar
8. Terrones, M., Terrones, H., Grobert, N., Trasobares, S., Hsu, W.–K., Zhu, Y.-Q., Hare, J. P., Kroto, H. W., Walton, D. R. M., Redlich, P. K., Rühle, M., Zhang, J. P., Cheetham, A. K., Appl. Phys. Lett. 75, 3932 (1999)Google Scholar
9. Terrones, M., Ajayan, P. M., Banhart, F., Blasé, X., Carroll, D. L., Czerw, R., Foley, B., Grobert, N., Kamalakaran, R., Kohler-Redlich, P., Rühle, M., Seeger, T., Terrones, H.. Appl. Phys. A: Mater. Sci. Process. 74, 355 (2002)Google Scholar
10. Trasobares, S., Stéphan, O., Colliex, C., Hsu, W. K., Kroto, H. W., Walton, D. R. M., J., Chem. Phys. 116, 8966 (2002)Google Scholar
11. Sen, R., Satishkumar, B. C., Govindaraj, S., Harikumar, K. R., Renganathan, M. K., Rao, C. N. R., J. Mater. Chem. 12, 2335 (1997)Google Scholar
12. Sen, R., Satishkumar, B. C., Govindaraj, A., Harikumar, K. R., Raina, G., Zhang, J.–P., Cheetham, A. K., Rao, C. N. R., Chem. Phys. Lett. 287, 671 (1998)Google Scholar
13. Nath, M., Satishkumar, B. C., Govindaraj, A., Vinod, C. P., Rao, C. N. R., Chem. Phys. Lett. 322, 333 (2000)Google Scholar
14. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., J. Chen, Chem. Phys. Lett. 303, 467 (1999)Google Scholar
15. Scofiled, J. H., J. Electron Spectrosc. 8, 129 (1976)Google Scholar
16. Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., Derbyshire, F., Chem. Phys. Lett. 315, 25 (1999)Google Scholar
17. Feenstra, R. M., Phys. Rev. B 50, 4561 (1994)Google Scholar
18. Czerw, R., Terrones, M., Charlier, J.-C., Blasé, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P. M., Blau, W., Rühle, M., Carroll, D. L., Nanolett 1, 457 (2001)Google Scholar