Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-21T00:14:05.397Z Has data issue: false hasContentIssue false

Aem and Hrem Evaluation of Carbon Nanostructures in Silica Aerogels

Published online by Cambridge University Press:  22 February 2011

X.Y. Song
Affiliation:
Energy and Environment Division, Lawrence Berkeley Laboratory University of California, Berkeley, CA 94720
W. Cao
Affiliation:
Energy and Environment Division, Lawrence Berkeley Laboratory University of California, Berkeley, CA 94720
A.J. Hunt
Affiliation:
Energy and Environment Division, Lawrence Berkeley Laboratory University of California, Berkeley, CA 94720
Get access

Abstract

Nanostructured carbon has been deposited in silica aerogels by chemical vapor infiltration using acetylene or ferrocene at moderate temperatures. Using analytical electron microscopy and high-resolution electron microscopy, we have observed various carbon rings and nanotubes in the silica aerogel-based carbon composite. Both X-ray microanalysis and nano-probe diffraction techniques have been used to confirm the presence of those carbon nanostructures. The morphologies and structural properties of the carbon nanotubes and rings have also been examined in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. lijima, S., Nature 354, 5658 (1991).Google Scholar
2. Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., and Chan, B., Nature 364, 514516 (1993).Google Scholar
3. Ajayan, P.M. and lijima, S., Nature 361, 333334 (1993).Google Scholar
4. Ross, P., Sci. Am. 265, 16 (1991).Google Scholar
5. Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys. Rev. Lett. 68, 631634 (1992).Google Scholar
6. Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 15791581 (1992).Google Scholar
7. Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220222 (1992).Google Scholar
8. Zhang, X.P., Zhang, X.B., Tendeloo, C.V., Amelinckx, S., Beeck, M. O., and Landuyt, J.V., J. Crys. Growth 130, 368382 (1993).Google Scholar
9. Jiao, J. in Proc. 51st Annual Meeting of the Microscopy Society of America (San Francisco Press, San Francisco, 1993) pp. 750751.Google Scholar
10. Lin, X., Wang, X.K., Dravid, V.P., Chang, R.H., and Ketterson, J.B., Appl. Phys. Lett. 64, 181183 (1994)Google Scholar
11. Saito, Y., Yoshikawa, T., Okuda, M., and Fujimoto, N., J. Appl. Phys. 75 (1) 134137 (1994).Google Scholar
12. Tewari, P.H., Hunt, A.J., Lieber, J.G., and Lofftus, K.D. in Aerogels, edited by Fricke, J. (Springer-Verlag, Berlin, 1986) pp. 3137.Google Scholar
13. Cao, W. and Hunt, A.J., in this Symposium Proceedings.Google Scholar
14. lijima, S., Ichihashi, T. & Ando, Y., Nature 356, 776778 (1992).Google Scholar
15. Ajayan, P.M., Ichihashi, T., and lijima, S., Chem. Phys. Lett. 202 (5) 384388 (1993).Google Scholar