Hostname: page-component-76dd75c94c-t6jsk Total loading time: 0 Render date: 2024-04-30T07:16:56.810Z Has data issue: false hasContentIssue false

Affects of Hydrogen Peroxide on the Stability of Becquerelite

Published online by Cambridge University Press:  26 February 2011

Karrie-Ann Kubatko
Affiliation:
khughes1@nd.edu
Daniel Unruh
Affiliation:
Daniel.Unruh.3@nd.edu
Peter C. Burns
Affiliation:
pburns@nd.edu
Get access

Abstract

While the majority of studies of alteration of UO2 and commercial spent nuclear fuel under simulated geological repository conditions have emphasized the importance of uranyl oxide hydrates and uranyl silicates, the influence of peroxide on repository performance has been largely overlooked. There is considerable evidence that uranyl peroxides will be important alteration phases of nuclear waste, and that these phases may impact the long-term performance of a geologic repository such as Yucca Mountain. Here we report the thermodynamics and kinetics of becquerelite, Ca[(UO2)6O4(OH)6](H2O)8, in the presence of solutions containing hydrogen peroxide. Thermodynamic calculations reveal that in solutions containing 3.5 × 10-6 M hydrogen peroxide, studtite is thermodynamically favorable over becquerelite at 298 K. To access the kinetics of this reaction, batch experiments were conducted by the reaction of becquerelite and solutions containing hydrogen peroxide. In the presence of 0.1 M hydrogen peroxide, becquerelite altered to studtite within eight hours.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frondel, C., Systematic Mineralogy of Uranium and Thorium. U.S. Geological Survey Bulletin, 1064, 400 p (1956).Google Scholar
2. Buck, E.C., Brown, N.R., Dietz, N.L., Environmental Science and Technology, 30, 81 (1996).Google Scholar
3. Wronkiewicz, D., Bates, J., Gerding, T., Veleckis, E., Tani, B., J. Nucl. Mater. 190, 107 (1992).Google Scholar
4. Wronkiewicz, D., Bates, J., Wolf, S., Buck, E., J. Nucl. Mat., 238, 78 (1996).Google Scholar
5. Finch, R.J. and Ewing, R.C., J. Nucl. Mat., 190, 133 (1992).Google Scholar
6. Pearcy, E., Prieryl, J., Murphy, W. and Leslie, B., Applied Geochemistry, 9, 713 (1994).Google Scholar
7. Finn, P.A., Hoh, J.C., Wolf, S.F., Slater, S.F., Bates, J.K., Radiochim. Acta, 74, 65 (1996).Google Scholar
8. Finch, R.J., Buck, E., Finn, P., and J Bates, Mat. Res. Symp. Proc., 556, 431 (1999).Google Scholar
9. Vochten, R. and Van Haverbeke, L., Mineralogy and Petrology, 43, 6572 (1990).Google Scholar
10. Sowder, A.G., Clark, S.B., Fjeld, R.A., Radiochimica Acta, 74, 45 (1996).Google Scholar
11. Sowder, A.G., Clark, S.B., Fjeld, R.A., Env. Sci. Tech., 33, 3552 (1999).Google Scholar
12. McNamara, B., Hanson, B., Buck, E., Mat. Res. Symp. Proc., 757, 401 (2002).Google Scholar
13. Sattonnay, G., Ardois, C., Lucchini, J.F., Barthe, M.-F., Garrido, F., Gosset, D., J. Nucl. Mat., 288, 11 (2001).Google Scholar
14. Burakov, B.E., Strykanova, E.E., , E.E., Anderson, E.B., Mat. Res. Symp. Proc., 465, 1309 (1997).Google Scholar
15. Kubatko, K.A., Helean, K., Navrotsky, A., Burns, P.C., Science, 302, 1191 (2003).Google Scholar
16. Kubatko, K.A., Helean, K., Navrotsky, A., Burns, P.C., Am. Min., in press (2005).Google Scholar
17. Robie, R.A., Hemingway, B.S., Fisher, J.R., U.S. Geol. Surv. Bull. 2131 (1995).Google Scholar
18. Chase, M.W., NIST-JANAF Thermochemical Tables, Fourth Edition, Monograph No. 9 (Part I and Part II). American Institute of Physics, Melville, NY, 1952p, 1998.Google Scholar
19. Kubatko, K.A., Helean, K., Navrotsky, A., Burns, P.C., Am. Min., 90, 1284 (2004).Google Scholar