Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T20:09:46.742Z Has data issue: false hasContentIssue false

Al rich AlN/AlGaN Quantum Wells

Published online by Cambridge University Press:  01 February 2011

Talal Mohammed Ahmad Al tahtamouni
Affiliation:
talal@phys.ksu.edu, kansas state university, physics, 1604 roof drive D28, Manhattan, KS, 66502, United States, 785-395-5909
Neeraj Nepal
Affiliation:
neeraj@phys.ksu.edu, Kansas State University, Physics Department, 116 CW Hall, Manhattan, KS, 66506, United States
Jingyu Lin
Affiliation:
jylin@phys.ksu.edu, Kansas State University, Physics Department, 116 CW Hall, Manhattan, KS, 66506, United States
Hongxing Jiang
Affiliation:
jiang@phys.ksu.edu, Kansas State University, Physics Department, 116 CW Hall, Manhattan, KS, 66506, United States
Get access

Abstract

Two sets of AlN/AlxGa1−xN quantum wells (QW) have been grown by metalorganic chemical vapor deposition (MOCVD). The first set consists of five samples of AlN/AlxGa1−xN QWs with (x ∼ 0.65) with well width, Lw, varying from 1 to 3 nm. The second set consists of four samples of AlN/AlxGa1−xN with (Lw = 1.5 nm) with Al composition, x, varying from 0.70 to 0.85. Low temperature photoluminescence (PL) spectroscopy has been employed to study the Lw dependence of the PL spectral peak position, emission efficiency, and line width. Our results have shown that these AlN/AlGaN QW structures exhibit polarization fields of ∼ 4 MV/cm. Due to effects of quantum confinement and polarization fields, AlN/AlGaN QWs with Lw between 2 and 2.5 nm exhibit the highest quantum efficiency. The dependence of the emission linewidth on Lw yielded a linear relationship. The implications of our results on deep ultraviolet (UV) optoelectronic device applications are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Collins, C. J., Sampath, A. V., Garrett, G. A., Saeney, W. L., Shen, H., Wraback, M., Nikiforov, A. Yu., Cargill, G. S., and Dierolf, V., Phys. Appl. Phys. Lett. 86, 031916 (2005).Google Scholar
2. Hirayama, H., Enomoto, Y., Kinoshita, A., Hirata, A., and Aoyagi, Y., Appl. Phys. Lett. 80, 37 (2001).Google Scholar
3. Adivarahan, V., Wu, S., Zhang, J. P., Chitnis, A., Shatalov, M., Mandavilli, V., Gaska, R., and Khan., M. Asif Appl. Phys. Lett. 84, 4762 (2004).Google Scholar
4. Zhang, J. P., Chitnis, A., Adivarahan, V., Wu, S., Mandavilli, V., Pachipulusu, R., Shatalov, M., Simin, G., Yang, J. W., and Khan, M. Asif, Appl. Phys. Lett. 81, 4910 (2002).Google Scholar
5. Yasan, A., McClintock, R., Mayes, K., Shiell, D., Gautero, L., Darvish, S. R., Kung, P., and Razeghi, M., Appl. Phys. Lett. 83, 4701 (2003).Google Scholar
6. Hanlon, A., Pattison, P. M., Kaeding, J. F., Sharma, R., Fini, P., and Nakamura, S., Jpn. J. Appl. Phys., Part 2 42, L628 (2003).Google Scholar
7. Fischer, A. J., Allerman, A. A., Crawford, M. H., Bogart, K. H. A., Lee, S. R., Kaplar, R. J., Chow, W. W., Kurtz, S. R., Fuller, K. W., and Figiel, J. J., Appl.Phys. Lett. 84, 3394 (2004).Google Scholar
8. Wu, S., Adivarahan, V., Shatalov, M., Chitnis, A., Sun, W., and Khan, M. Asif, Jpn. J. Appl. Phys. 43, L1035 (2004).Google Scholar
9. http://www.phys.ksu.edu/area/GaNgroupGoogle Scholar
10. Kim, H. S., Mair, R.A., Li, J., Lin, J.Y., and Jiang, H. X., Appl. Phys. Lett. 76, 1252 (2000).Google Scholar
11. Bonfiglio, A., Lomascolo, M., Cingolani, R., Carlo, A. Di, Sala, F. Della, Lugli, P., Botchkarev, A., and Morkoc, H., J. Appl. Phys. 87, 2289 (1999).Google Scholar
12. tahtamouni, T. M. Al, Nepal, N., Lin, J.Y., and Jiang, H. X., Appl. Phys. Lett. 88, 062103 (2006).Google Scholar
13. Zeng, K. C., Li, J., Lin, J.Y., and Jiang, H. X., Appl. Phys. Lett. 76, 3040 (2000).Google Scholar
14. Park, S. H. and chuang, S. L., Appl. Phys. Lett. 72, 3103 (1998).Google Scholar
15. Im, J. S., Kollmer, H., Off, J., Sohmer, A., Scholtz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
16. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
17. Satake, A., Masumoto, Y., Miyajima, T., Asatsuma, T., Nakamura, F., and Ikeda, M., Phys. Rev. B 57, R2041 (1998).Google Scholar
18. Bodin, C., Andre, R., Cibert, J., Dang, Le Si, Bellet, D., Feuillet, G., and Jouneau, P. H., Phys. Rev. B 51, 13181 (1995).Google Scholar
19. Nepal, N., Li, J., Nakarmi, M. L., Lin, J.Y., and Jiang, H. X., Appl. Phys. Lett. 88, 062103 (2006).Google Scholar