Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:28:37.862Z Has data issue: false hasContentIssue false

Ale Growth of Transparent Conductors

Published online by Cambridge University Press:  10 February 2011

Mikko Rit
Affiliation:
Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Timo Asikainen
Affiliation:
Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Markku Leskelä
Affiliation:
Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Jarmo Skarp
Affiliation:
Microchemistry Ltd, P.O. Box 45, FIN-02151 Espoo, Finland
Get access

Abstract

Owing to its self-limiting growth mechanism the Atomic Layer Epitaxy (ALE) technique is capable of growing uniform high quality thin films on large area substrates. Therefore, ALE is an attractive choice for depositing transparent electrically conducting films for large area applications, such as solar cells and flat panel displays. In this paper studies on ALE growth of In2O3 and ZnO based transparent conducting thin films will be presented. In2O3, In2O3:Sn and In 2O3:F films were grown at 500 °C and their lowest resistivities were about 3 x 10-3, 2 x 10-3 and 6 x 10-4 Ωcm, respectively. Low temperature (120 - 350 °C) ALE deposition processes were developed for ZnO and ZnO:AI films, the latter having resistivities as low as 8 x 10-4 Ωcm. A straightforward scale-up of the ZnO process from 5 x 5 to 30 x 30 cm 2 substrate size was also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leskela, M. and Ritala, M., J. Phys. IV, 5, C5937 (1995).Google Scholar
2. Suntola, T., Thin Solid Films, 216, 84 (1992).Google Scholar
3. Stolt, L., Hedström, J. and Skarp, J., 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, Vol. 1, 250.Google Scholar
4. Utsunimiya, K., Bull. Chem. Soc. Jpn., 44, 2688 (1971).Google Scholar
5. Ylilammi, M. and Ranta-aho, T., Thin Solid Films, 232, 56 (1993).Google Scholar
6. Asikainen, T., Ritala, M. and Leskeli, M., J. Electrochem. Soc., 141, 3210 (1994).Google Scholar
7. Starowieyski, K. B., in Chemistry of Aluminium, Gallium, Indium and Thallium, edited by Downs, A. J. (Blackie Academic&Professional, London, 1993) p. 322.Google Scholar
8. Kane, J., Schweizer, H. P. and Kern, W., Thin Solid Films, 29, 155 (1975).Google Scholar
9. Lujala, V., Skarp, J., Tammenmaa, M. and Suntola, T., Appl. Surf. Sci., 82/83, 34 (1994).Google Scholar
10. Asikainen, T., Ritala, M. and Leskeli, M., J. Electrochem. Soc., 142, 3538 (1995).Google Scholar
11. Viirola, H. and Niinistö, L., Thin Solid Films, 249, 144 (1994).Google Scholar
12. Viirola, H. and Niinistö, L., Thin Solid Films, 251, 127 (1994).Google Scholar
13. Lujala, V., Skarp, J., Tammenmaa, M., Suntola, T. and Wallinga, J., Proceedings of 12th European Photovoltaic Solar Energy Conference, Amsterdam 1994, 1511.Google Scholar
14. Ouwens, J. D., Schropp, R. E. I., Wallinga, J., van der Weg, W. F., Ritala, M., Leskela, M. and Hyvdrinen, J., Proceedings of 12th European Photovoltaic Solar Energy Conference, Amsterdam, 1994, 1296.Google Scholar
15. Ritala, M., Leskeld, M., Nykinen, E., Soininen, P. and Niinistö, L., Thin Solid Films, 225, 288 (1993).Google Scholar