Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T16:09:39.343Z Has data issue: false hasContentIssue false

Amorphous Carbon-Silicon Alloys Prepared by a High Plasma Density Source

Published online by Cambridge University Press:  10 February 2011

A. C. Ferrari
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1 PZ, UK
B. Racine
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1 PZ, UK Laboratoire de Physique de la Matierie Condensee, Amiens, France
N. A. Morrison
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1 PZ, UK
I. Hutchings
Affiliation:
Materials Science and Metallurgy Department, Cambridge University, UK
W. I. Milne
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1 PZ, UK
J. Robertson
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1 PZ, UK
Get access

Abstract

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-Cl. xSix:H alloys with a good optical transparency and a band gap over 2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robertson, J., Phil. Mag. B, 66, 615 (1992)Google Scholar
2. Oguri, K. and Arai, T., J. Mater. Res. 5, 2567 (1990)Google Scholar
3. Oguri, K. and Arai, T., Thin Solid Films, 208 158 (1992)Google Scholar
4. Donnet, C., Surf. Coat. Tech., 100–101 180 (1998)Google Scholar
5. Weiler, M. et al. Phys. Rev. B, 53 1592 (1996)Google Scholar
6. Morrison, N. A., Muhl, S., Rodil, S. E., Ferrari, A. C., Nesladek, M., Milne, W. I. and Robertson, J., Phys. Stat. Sol. A, 172 79 (1999)Google Scholar
7. Libassi, A., Ferrari, A. C., Stolojan, V., Tanner, B. K., Robertson, J. and Brown, L.M., Diam. Relat. Mater, to be published (1999).Google Scholar
8. Ferrari, A. C., Robertson, J., Beghi, M. G., Bottani, C. E., Ferulano, R. and Pastorelli, R., Appl. Phys. Lett., 75 1893 (1999)Google Scholar
9. Enke, K., Dimigen, H. and Hubsh, H., Appl. Phys. Lett., 36 291 (1980)Google Scholar
10. Voevodin, A. A. and Donley, M. S., Surf. Coat. Technol. 76, 534 (1995); Diam. Relat. Mater, 5 1264 (1996)Google Scholar
11. Gangopadhyay, A. K., Willermet, P. A., Tamor, M. A. and Vassel, W. C., Trib. Intern., 30 9 (1997)Google Scholar
12. Conde, J. P. et al. , J. Appl. Phys., 85 3327 (1999)Google Scholar
13. Ferrari, A. C. and Robertson, J., Phys. Rev. B, submitted; these proceedings.Google Scholar
14. Zhang, X., Weber, W. H., Vassel, W. C., Potter, T. J. and Tamor, M. A., J. Appl. Phys., 83 220 (1998)Google Scholar
15. Ristein, J., Stief, T., Ley, L. and Beyer, W., J. Appl. Phys, 84 3836 (1998)Google Scholar