Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T05:14:06.368Z Has data issue: false hasContentIssue false

Amplification of Misorientation of Ge Films on Si (100) During Ion-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

Cho-Jen Tsai
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

We have observed significant increases in the misorientation of Ge films on Si (001) grown by ion-assisted molecular beam epitaxy. The misorientation between the Ge films and Si substrates was found to be a function of the ion-to-atom flux ratio and growth temperature. The parametric dependence of the misorientation on the growth conditions suggests that defects generated by low energy ion bombardment are responsible for the observed increase in misorientation. The amplification of misorientation produced by concurrent low energy ion bombardment during epitaxial growth was attributed to an increase in the fraction of misfit strain accommodated by threading dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nagai, H., J. Appl. Phys. 45, 3789 (1974).Google Scholar
[2] Maigne, P. and Roth, A.P., Semicond. Sci. Technol. 1, 1 (1992).CrossRefGoogle Scholar
[3] Olsen, G.H. and Smith, R.T., Phys. Stat. Sol. A31, 739 (1975).Google Scholar
[4] Ghandhi, S.K. and Ayers, J.A., Appl. Phys. Lett. 53, 1024 (1988).Google Scholar
[5] Bhat, I.B., Patel, K., Taskar, N.R., Ayers, J.E., and Ghandhi, S.K., J. Cryst. Growth 88, 23 (1988).Google Scholar
[6] Kawamura, Y. and Okamoto, H., J. Appl. Phys. 50, 4457 (1979).Google Scholar
[7] Bai, G., Ph.D. thesis, California Institute of Technology (1991).Google Scholar
[8] Bai, G., Nicolet, M.-A., Vreeland, T. Jr, Ye, Q., and Wang, K.L., Appl. Phys. Lett. 55, 1874 (1989).CrossRefGoogle Scholar
[9] Bai, G., Jamieson, D.N., Nicolet, M.-A., and Vreeland, T. Jr, Mat. Res. Soc. Symp. Proc. 102, 259 (1988).CrossRefGoogle Scholar
[10] Kleiman, J., Park, R.M., and Mar, H.A., J. Appl. Phys. 64, 1201 (1988).Google Scholar
[11] Neumann, D.A., Zabel, H., and Morkoc, H., J. Appl. Phys. 64 3024 (1988).Google Scholar
[12] Roth, A.P., Sacilotti, M.A., Masut, R.A., Morris, D., Young, J., Lacelle, C., Fortin, E., and Brebner, J.L., Can. J. Phys. 67 330 (1989).Google Scholar
[13] Neumann, D.A., Zabel, H., and Morkoc, H., Appl. Phys. Lett. 43, 59 (1983).Google Scholar
[14] Beanland, R. and Pond, R.C., Int. Symp. on Struct. Prop. Disloc. Semicond., Oxford, Inst. Phys. Conf. Ser. 104, 455 (1989).Google Scholar
[15] Tsai, C.J., Atwater, H.A., and Vreeland, T., Appl. Phys. Lett. 57, 2305 (1990).Google Scholar
[16] Tsai, C.J., Atwater, H.A., and Vreeland, T., Mat. Res. Soc. Symp. Proc. 268, 127 (1992).Google Scholar
[17] Tsai, C.J., Ph.D. thesis, Caltech (1992).Google Scholar
[18] Hull, R., Bean, J.C., Bonar, J.M., Higashi, G.S., Short, K.T., Temkin, H., and White, A.E., Appl. Phys. Lett. 56, 2445 (1990).CrossRefGoogle Scholar
[19] Bedrossian, P., Houston, J.E., Tsao, J.Y., Chason, E., and Picraux, S.T., Phys. Rev. Lett. 67, 124 (1991).Google Scholar
[20] Eaglesham, D.J. and Cerullo, M., Appl. Phys. Lett. 58 2276 (1991).Google Scholar