Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T06:44:09.868Z Has data issue: false hasContentIssue false

An Investigation into the Role of Incorporated Solvent (EtOH/H2O) Molecules on the Structure of Group 2 Metal bis(β- Diketonate) Complexes: Ramifications for CVD Precursors of Electronic Materials.

Published online by Cambridge University Press:  10 February 2011

David J. Otway
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332–0400, U.S.A.
Henry A. Luten
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332–0400, U.S.A.
K. M. Abdul Malik
Affiliation:
School of Chemistry, Cardiff University, Cardiff, Wales, U.K.
Michael B. Hursthouse
Affiliation:
School of Chemistry, Cardiff University, Cardiff, Wales, U.K.
William S. Rees Jr.
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332–0400, U.S.A.
Get access

Abstract

The synthesis and characterization of thermally stable, volatile, group 2 element-containing complexes is an important prerequisite for the subsequent use of these compounds in chemical vapor deposition (CVD) of superconducting metal oxides (SMO) and other electronic materials, e.g., YBa2Cu3O7-δ. and CaGa2S4:Ce. The utilization of group 2 metal ethoxide compounds {[M(OEt)2(EtOH)4]n (where M = Ca, Sr or Ba)) as precursors to additional complexes is discussed. For example, the compounds [M(tmhd)(OEt)(EtOH)]n (Htmhd = 2,2,6,6- tetramethylheptane-3,5-dione) may be obtained by reacting one equivalent of Htmhd with the metal bis(ethoxide), and these also may be reacted further with functionalized alcohols, or a second β–diketone, to form heteroleptic compounds. Additionally, the preparation and characterization of some Lewis base adducted complexes have been examined with an emphasis on the role that water plays in their isolation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rees, W. S. Jr., Barron, A., Adv. Mater. Opt. Elec., 2, 271 (1993).Google Scholar
2. (a) Turnipseed, S. B., Barkley, R. M., Sievers, R. E., Inorg. Chem., 30, 1164 (1991). (b) S. B. Tumipseed, R. M. Barkley, R. E. Sievers, Inorg. Chem., 33, 798 (1994).Google Scholar
3. Gleizes, A., Sans-Lenain, S., Medus, D., C. R. Acad. Sci. Paris, 312 II, 983 (1991).Google Scholar
4. Bradley, D. C., Hasan, M., Hursthouse, M. B., Motevalli, M., Khan, O. F. Z., Pritchard, R. G., Williams, J. O., J. Chem. Soc., Chem. Commun., 1992, 575.Google Scholar
5. Rees, W. S. Jr., Carris, M. W., Hesse, W., Inorg. Chem., 30, 4479 (1991).Google Scholar
6. Rossetto, G., Benetollo, P. F., Porchia, M., Zanella, P., Polyhedron, 11, 979 (1992).Google Scholar
7. Arunasalam, V. C.; Drake, S. R.; Hursthouse, M. B.; Malik, K. M. A.; Miller, S. A. Inorg. Chem., in press.Google Scholar
8. Drake, S. R., Hursthouse, M. B., Otway, D. J., Malik, K. M. A., J. Chem. Soc., Dalton Trans., 1993, 2883.Google Scholar
9. (a) Gleizes, A., Sans-Lenain, S., Medus, D., C. R. Acad. Sci. Paris, 313 (II), 761 (1991). (b) A. Drozdov, S. Troyanov, Polyhedron, 11, 2877 (1992).Google Scholar
10. (a) Sluis, P. Van der, Spek, A. L., Timmer, K., Meinema, H. A., Acta Cryst., C46, 1741 (1990). (b) K. Timmer, H. A. Meinema, Inorg. Chim. Acta, 187, 99 (1991). (c) R. Gardiner, D. W. Brown, P. S. Kirlin, A. L. Rheingold, Chem. Mater., 3, 1053 (1991).Google Scholar
11. Norman, J. A. T., Pez, G. P., J. Chem. Soc., Chem. Commun., 1991, 971.Google Scholar
12. Drake, S. R., Miller, S. A., Williams, D. J., Inorg. Chem., 32, 3227 (1993).Google Scholar
13. Vaartstra, B. A., Gardiner, R. A., Gordon, D. C., Ostrander, R. L., Rheingold, A. L., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., Gokoglu, S. (Mater. Res. Soc. Proc., 335, Pittsburgh, PA, 1994) pp. 203208.Google Scholar
14. (a) Schulz, D. L., Hinds, B. J., Stern, C. L., Marks, T. J., Inorg. Chem., 32, 249 (1993). (b) D. L. Schulz, B. J. Hinds, D. A. Neumayer, C. L Stem, T. J. Marks, Chem. Mater., 5, 1605 (1993). (c) W. S. Rees, Jr., C. R. Caballero, W. Hesse, Angew. Chem. Int. Edn. Engl., 31, 735 (1992). (d) W. S. Rees, Jr., K. A. Dippel, M. W. Carris, C. R. Caballero, D. A. Moreno, W. Hesse, in Better Ceramics Through Chemistry V, edited by M. J. Hampden-Smith, W. G. Klemperer, C. J. Brinker, (Mater. Res. Soc. Proc., 271, Pittsburgh, PA, 1992) pp. 127-134.Google Scholar
15. Miele, P., Foulon, J-D., Hovnanian, N., Polyhedron, 12, 209 (1993).Google Scholar
16. Hubert-Pfalzgraf, L. G., Labrize, F., Bois, C., Vaissermann, J., Polyhedron, 13, 2163 (1994).Google Scholar
17. Arunasalam, V. C., Baxter, I., Drake, S. R., Hursthouse, M. B., Malik, K. M. A., Otway, D. J., Plakatouras, J. C., Inorg. Chem., 34, 5295 (1995).Google Scholar
18. Drake, S. R., Hursthouse, M. B., Malik, K. M. A., Miller, S. A., Otway, D. J., Inorg.Chem., 32, 4464 (1993).Google Scholar
19. Timmer, K., Spee, C. I. M. A., Mackor, A., Meinema, H. A., Eur. Pat. Appl. 0405634A2 (1991).Google Scholar
20. Zhang, J. M., Wessels, B. W., Richardson, D. S., Marks, T. J., DeGroot, D. C., C. R. Kannwurf, J. Appl. Phys., 59, 2743 (1991).Google Scholar
21. (a) Drake, S. R., Miller, S. A., Williams, D. J., Inorg. Chem., 32, 3227 (1993). (b) D. J. Otway, PhD Thesis, University of London, 1994.Google Scholar
22. Complete details of crystal structure studies will be published elsewhere.Google Scholar
23. Luten, H. A., Otway, D. J., Rees, W. S., Jr., these proceedings.Google Scholar