Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-06T17:57:16.127Z Has data issue: false hasContentIssue false

Analysis of the Structure of Light-emitting Porous Silicon by Raman Scattering

Published online by Cambridge University Press:  15 February 2011

Zhifeng Sui
Affiliation:
Department of Applied Physics and Microelectronies Sciences Laboratories, Columbia University, New York, NY 10027
Patrick P. Leong
Affiliation:
Department of Applied Physics and Microelectronies Sciences Laboratories, Columbia University, New York, NY 10027
Irving P. Herman
Affiliation:
Department of Applied Physics and Microelectronies Sciences Laboratories, Columbia University, New York, NY 10027
Gregg S. Higashi
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
Henryk Temkin
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abastrac

Raman spectra from a thick porous silicon film (∼100 μm) that strongly emits in the visible (∼ 6350 Å) at room temperature are obtained. An asymmetric peak with a Raman shift of ∼ 508 - 510 cm−1 and a width of ∼ 40 cm−1 is seen in every spectrum. This Raman feature resembles that of μc-Si, suggesting that the local structure of the porous silicon is a network of interconnected crystalline silicon islands with the island size in the nanometer range., and that the, shape of the islands is more sphere-like than rod-like. The characteristic dimension of the islands in these porous silicon films is estimated to be ∼ 2.5 - 3.0 nm on the basis of an empirical model calculation of phonon confinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
[3] Tsai, C., Li, K. -H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
[4] Bomchil, G., Halimaoui, A., and Herino, R., Appl. Surf. Sci. 41/42, 604 (1989).Google Scholar
[5] Herino, R., Bomchil, G., Barla, K., Bertrend, C., and Ginoux, J. L., J. Electroochem. Soc. 134, 1994 (1987).CrossRefGoogle Scholar
[6] Bomchil, G., Halimaoui, A., and Herino, R., Microelectron. Eng. 8, 293 (1988), and references cited therein.Google Scholar
[7] Searson, P. C., Appl. Phys. Lett. 59, 832 (1991).Google Scholar
[8] Chuang, S.-F., Collins, S. D., and Smith, R. L., Appl. Phys. Lett., 57, 2247 (1989).Google Scholar
[9] Dimaria, D.J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, N., and Curto, J. A., J. Appl. Phys. 56, 401 (1984).Google Scholar
[10] Pollak, F. H. and Tsu, R., in Proceedings of the Society of Photo-Optical Engineers (SPIE, Bellingham, WA, 1983), 452, p. 26.Google Scholar
[11] Richter, H., Wang, Z. P., and Ley, L., Solid State Commun., 39, 625 (1981).Google Scholar
[12] Iqbal, Z. and Veprek, S., J. Phys. C: Solid State Phys. 15, 377 (1982).Google Scholar
[13] Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58, 739 (1986).CrossRefGoogle Scholar
[14] Tu, A. and Persans, P.D., Mat. Res. Soc. Symp. Proc., 206, 97 (1991).Google Scholar
[15] Goodes, S. R., Jenkins, T. E., Beale, M. I. J., Benjamin, J. D., and Pickering, C., Semicond. Sci. Technol. 3, 483 (1988).Google Scholar
[16] McMillan, P., in The Physics and Technology of Amorphous SiC2 edited by Devine, R. A. B. (Plenum, New York, 1988), p. 63.Google Scholar