Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-25T03:11:52.184Z Has data issue: false hasContentIssue false

Annular Ringlike Arrays from Mixtures of Metal Nanoparticles

Published online by Cambridge University Press:  10 February 2011

P. C. Ohara
Affiliation:
Department of Chemistry & Biochemistry, University of California, Los Angeles, CA, 90095–1569, pohara@ucla.edu
J. R. Heath
Affiliation:
Department of Chemistry & Biochemistry, University of California, Los Angeles, CA, 90095–1569, pohara@ucla.edu
W. M. Gelbart
Affiliation:
Department of Chemistry & Biochemistry, University of California, Los Angeles, CA, 90095–1569, pohara@ucla.edu
Get access

Abstract

We describe a theory for hole nucleation in volatile, wetting, thin liquid films. Hole nucleation in this system can occur due to two independent driving forces: evaporation (volatile hole nucleation) and by disjoining pressure effects (non-volatile hole nucleation). Although a concerted combination of these two can be in effect, the cases are treated separately here and will be treated jointly in the context of a simulation elsewhere. Growing holes – dry areas of the solid surface which are otherwise wet by solvent – are conjectured to be responsible for the formation of close-packed 2D annular ringlike arrays from dilute solutions of nearly monodisperse, large (3–5nm diameter), organically passivated metal particles [1]. When organic solutions of these nanoparticles are evaporated on a solid carbon substrate (a TEM grid), the resulting sub-monolayer structures are annular ringlike arrays due to the pinning of the rim of an opening hole by a sufficient collection of particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohara, P.C., Heath, J.R., Gelbart, W.M. (submitted).Google Scholar
2. Herron, N., Calabrese, J.C., Farneth, W.E., Wang, Y., Science 259, 1426 (1993).Google Scholar
3. Vossmeyer, T., Reck, G., Katsikas, L., Haupt, E.T.K., Schulz, B., Weller, H., Science, 267, 1476 (1995).Google Scholar
4. Eychmuller, A., Mews, A., Weller, H., Chem. Phys. Lett. 208, 59 (1993).Google Scholar
5. Murray, C.B., Bawendi, M.G., Science 270, 1335 (1995).Google Scholar
6. Ohara, P.C., Leff, D.V., Gelbart, W.M., Heath, J.R., Phys. Rev. Lett. 75, 3466 (1995).Google Scholar
7. Motte, L., Billoudet, F., Pileni, M.P., J. Phys. Chem. 99, 16425 (1995).Google Scholar
8. Luedtke, W.D., Landman, U., J. Phys. Chem. 100, 13323 (1996).Google Scholar
9. Giersig, M., Mulvaney, P., Langmuir 9, 3408 (1993).Google Scholar
10. Takagahara, T., Surf. Sci. 267, 310 (1992).Google Scholar
11. Kagan, C.R., Murray, C.B., Nirmal, M., Bawendi, M.G., Phys. Rev. Lett. 76, 1517 (1996).Google Scholar
12. Deegan, R., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., TA. Witten (submitted).Google Scholar
13. Adachi, E., Dimitrov, A.S., Nagayama, K., Langmuir 11, 1057 (1995).Google Scholar
14. Moriarty, See J.A., Schwartz, L.W., J. Colloid Int. Sci. 161, 335 (1993) and references contained therein.Google Scholar
15. Elbaum, M., Lipson, S.G., Phys. Rev. Lett. 72, 3562 (1994).Google Scholar
16. See, for example Brochard-Wyart, F., di Meglio, J.M., Quere, D., de Germes, P.G., Langmuir 7, 335 (1991) andGoogle Scholar
de Gennes, P.G., Rev. Mod. Phys. 57, 827 (1985).Google Scholar
17. DiBenedetti, P., Metastable Liquids. (Princeton University Press, 1996).Google Scholar
18. Brochard-Wyart, F., Daillant, J., Can. J. Phys. 68, 1084 (1990).Google Scholar
19. See, for example, Safran, S.A.. Statistical Thermodynamics of Surfaces. Interfaces, and Membranes. (Addison-Wesley, 1994).Google Scholar
20. Kralchevsky, See P.A., Ivanov, L.B., Nagayama, K., J. Colloid Int. Sci. 151, 79 (1992) and related work.Google Scholar