Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T00:40:19.167Z Has data issue: false hasContentIssue false

The Aspect Ratio Dependence of the Fluorescence of Gold Nanorods: An Experimental and Theoretical Study

Published online by Cambridge University Press:  01 February 2011

Susie Eustis
Affiliation:
gte377x@mail.gatech.edu, Georgia Tech, School of Chemistry and Biochemistry, Atlanta, GA, 30309, United States, 404-894-4009
Mostafa A. El-Sayed
Affiliation:
mostafa.el-sayed@chemistry.gatech.edu, Georgia Tech, Laser Dynamics Laboratory, School of Chemistry and Biochemistry
Get access

Abstract

Experimental observations and theoretical treatments are carried out for the band shape and relative intensity of the emission from gold nanorods of various aspect ratios in the range between 2.6 (1.5 theory) and 6.3 (9 theory). The calculation of the fluorescence spectra requires knowledge of the nanorod size distribution, the enhancement factors and the shape of the un-enhanced fluorescence spectrum. The comparison between the observed and calculated fluorescence band shapes is found to be good. The calculated changes in the relative intensities with aspect ratios are found to be much greater than that observed experimentally. This is due to the fact that for the observed emission of all the rods studied, nonradiative processes dominate the relaxation mechanism of the excited state, a fact that was not included in the theoretical treatments. Experimental results and theoretical treatments will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Link, S. and El-Sayed, M. A., Int. Rev. Phys. Chem. 19 409 (2000).Google Scholar
2. Kamat, P. V., J. Phys. Chem. B 106 7729 (2002).Google Scholar
3. Mooradian, A., Phys. Rev. Lett. 22 185 (1969).Google Scholar
4. Wilcoxon, J. P., Martin, J. E., Parsapour, F., Wiedenman, B. and Kelley, D. F., J. Chem. Phys. 108 9137 (1998).Google Scholar
5. Hwang, Y. N., Jeong, D. H., Shin, H. J., Kim, D., Jeoung, S. C., Han, S. H., Lee, J. S. and Cho, G., J. Phys. Chem. B 106 7581 (2002).Google Scholar
6. Huang, T. and Murray, R. W., J. Phys. Chem. B 105 12498 (2001).Google Scholar
7. Wang, G., Huang, T., Murray, R. W., Menard, L. and Nuzzo, R. G., J. Am. Chem. Soc. 127 812 (2005).Google Scholar
8. Link, S., Beeby, A., FitzGerald, S., El-Sayed, M. A., Schaaff, T. G. and Whetten, R. L., J. Phys. Chem. B 106 3410 (2002).Google Scholar
9. Zheng, J., Zhang, C. and Dickson, R. M., Phys. Rev. Lett. 93 077402 (2004).Google Scholar
10. Bruzzone, S., Arrighini, G. P. and Guidotti, C., Chem. Phys. 291 125 (2003).Google Scholar
11. Geddes, C. D., Parfenov, A., Gryczynski, I. and Lakowicz, J. R., Chem. Phys. Lett. 380 269 (2003).Google Scholar
12. Jian, Z., Yongchang, W. and Qin, W., Acta photonica sinica 32 357 (2003).Google Scholar
13. Maali, A., Cardinal, T. and Treguer-Delapierre, M., Physica E 17 559 (2003).Google Scholar
14. Geddes, C. D., Parfenov, A., Gryczynski, I. and Lakowicz, J. R., J. Phys. Chem. B 107 9989 (2003).Google Scholar
15. Mohamed, M. B., Volkov, V., Link, S. and El-Sayed, M. A., Chem. Phys. Lett. 317 517 (2000).Google Scholar
16. Eustis, S. and El-Sayed, M. A., J. Phys. Chem. B 109 16350 (2005).Google Scholar
17. Jiang, J., Bosnick, K., Maillard, M. and Brus, L., J. Phys. Chem. B 107 9964 (2003).Google Scholar
18. Michaels, A. M., Nirmal, M. and Brus, L., J. Am. Chem. Soc. 121 9932 (1999).Google Scholar
19. Persson, B. N. J. and Baratoff, A., Phys. Rev. Lett. 68 3224 (1992).Google Scholar
20. Birke, R. L., Lombardi, J. R. and Gersten, J. I., Phys. Rev. Lett. 43 71 (1979).Google Scholar
21. Lombardi, J. R., Birke, R. L., Lu, T. and Xu, J., J. Chem. Phys. 84 4171 (1986).Google Scholar
22. Adrian, F. J., J. Chem. Phys. 77 5302 (1982).Google Scholar
23. Boyd, G. T., Yu, Z. H. and Shen, Y. R., Phys. Rev. B 33 7923 (1986).Google Scholar
24. Nikoobakht, B. and El-Sayed, M. A., Chem. Mater. 15 1957 (2003).Google Scholar
25.a) Link, S., Mohamed, M. B. and El-Sayed, M. A., J. Phys. Chem. B 103 3073 (1999). b) B. Yan, Y. Yang and Y. Wang, J. Phys. Chem. B 107 9159 (2003). c) S. Link and M. A. El-Sayed, J. Phys. Chem. B 109 10531 (2005).Google Scholar