Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T01:52:11.179Z Has data issue: false hasContentIssue false

Atomic-Resolution Chemical Analysis at 100 Kv in the Scanning Transmission Electron Microscope

Published online by Cambridge University Press:  21 February 2011

N. D. Browning
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, USA
M. F. Chisholm
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, USA
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, USA
Get access

Abstract

In a 100 kV VG HB501 UX dedicated scanning transmission electron microscope, the 2.2 Å probe size allows the atomic structure to be observed with compositional sensitivity in the Z-contrast image. As this image requires only the high-angle scattering, it can be used to position the probe for simultaneous electron energy loss spectroscopy. Energy loss signals in the core loss region of the spectrum (>300 eV) are sufficiently localized that the spatial resolution is limited only by the probe. The electronic structure of the material at the interface can thus be determined on the same scale as the changes in composition, and atomic structure can be observed in the image, allowing the structure and chemical bonding at interfaces and boundaries to be characterized at the atomic level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pennycook, S. J. and Boatner, L. A., Nature 336, 565 (1988)CrossRefGoogle Scholar
2. Crewe, A. V., Wall, J. and Langmore, J., Science 168, 1338 (1970)Google Scholar
3. Browning, N. D, Chisholm, M. F. and Pennycook, S. J., Nature 366, 143 (1993)Google Scholar
4. Pennycook, S. J. and Jesson, D. E., Ultramicroscopy 37, 14 (1991), Acta Metall Mater 40, (1992), S149-159CrossRefGoogle Scholar
5. Jesson, D. E and Pennycook, S. J., 51st Annual Proc Micrs Soc America, eds Bailey, G. W. and Rieder, C. L., San Francisco Press, San Francisco, 978 (1993)Google Scholar
6. Fertig, J. & Rose, H., Optik 59, 407 (1981)Google Scholar
7. Loane, R. F, Xu, P. and Silcox, J, Ultramicroscopy 40, 121 (1992)CrossRefGoogle Scholar
8. Loane, R. F, Kirkland, E. J. and Silcox, J,Acta Cryst A 44, 912 (1988)CrossRefGoogle Scholar
9. Batson, P. E., Ultramicroscopy, 47, 133 (1992)Google Scholar
10. Schüppen, A., Mantl, S., Vescan, L., Woiwod, S., Jebasinski, R. and Lüth, H, Materials Science and Engineering B 12, 157 (1992)Google Scholar
11. Chisholm, M. F., Jesson, D. E, Pennycook, S. J. & Mantl, S., in press Appl. Phys. LettGoogle Scholar
12. Browning, N. D, and Pennycook, S. J, Microbeam Analysis 2, 81 (1993)Google Scholar
13. De Crescenzi, M., Derrien, J., Chainet, E. and Orumchian, K., Phys. Rev. B 39, 5520 (1989)Google Scholar
14. Batson, P. E., Phys. Rev. B 44, 55565561 (1991)CrossRefGoogle Scholar
15. Browning, N. D., Chisholm, M. F., Pennycook, S. J., Norton, D. P. and Lowndes, D. H., Physica C 212, 185(1993)Google Scholar
16. Browning, N. D, Yuan, J. and Brown, L. M, Ultramicroscopy 38, 291 (1991), Philosophical Magazine A 67, 261(1993)Google Scholar