Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T19:05:53.766Z Has data issue: false hasContentIssue false

Bacterial Production of Iron Sulfides

Published online by Cambridge University Press:  15 February 2011

Dennis A. Bazylinski*
Affiliation:
Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Get access

Abstract

Iron sulfide production by bacteria can be classified as extracellular or intracellular. Extracellular iron sulfide production is mediated by anaerobic, dissimilatory sulfate-reducing bacteria which produce sulfide as a product of their respiration. Released sulfide reacts with iron (and other metals) in the extracellular environment producing a variety of iron sulfide minerals including “amorphous iron sulfide”, mackinawite, greigite, pyrrhotite, marcasite, and pyrite. The type of minerals formed is dependent upon pH, Eh, and other physical and chemical factors. Extracellular production of these minerals are examples of biologically-induced mineralization in which mineral formation occurs from chemical and/or physical changes in the surrounding environment by the organism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, L.P., Contr. Boyce Thompson Inst. 16, 85 (1950).Google Scholar
2. Becking, L.G.M. Baas and Moore, D., Econ. Geol. 56, 259 (1961).CrossRefGoogle Scholar
3. Freke, A.M. and Tate, D., J. Biochem. Microbiol. Technol. Eng. 3, 29 (1961).CrossRefGoogle Scholar
4. Rickard, D.T., Stockholm Contr. Geol. 20, 50 (1969); 20, 67 (1969).Google Scholar
5. Hallberg, R.O., Neues Jahrb. Mineral. Monatsh. 11, 481 (1972).Google Scholar
6. Berner, R.A., Science 137, 669 (1962); J. Geol. 72, 293 (1964); Econ. Geol. 64, 383 (1969).CrossRefGoogle Scholar
7. Love, L.G. and Zimmerman, D.O., Econ. Geol. 56, 873 (1961); F. Fabricus, Geol. Rundschau 51, 647 (1961).Google Scholar
8. Lowenstam, H.A., Science 211, 1126 (1981).CrossRefGoogle Scholar
9. Lovley, D.R., Stolz, J.F., Nord, G.L. Jr., and Phillips, E.J.P., Nature 330, 252 (1987).Google Scholar
10. Hughes, M.N. and Poole, R.K., Metals in Micro-organisms (Chapman and Hall, New York, 1989) pp. 194204.Google Scholar
11. Hughes, M.N., The Inorganic Chemistry of Biological Processes, 2nd ed. (John Wiley and Sons, Ney York, 1981) pp. 154162.Google Scholar
12. Voet, D. and Voet, J.G., Biochemistry (John Wiley and Sons, New York, 1990) p. 539.Google Scholar
13. Hughes, M.N., in Comprehensive Coordination Chemistry, edited by Wilkinson, G., Gillard, R.D., and McCleverty, J. (Pergamon Press, Oxford, UK, 1987) pp. 541754.Google Scholar
14. Bruschi, M. and Guerlesquin, F., FEMS Microbiol. Rev. 54, 155 (1988).CrossRefGoogle Scholar
15. Yoch, D.C. and Carithers, R.P., Microbiol. Rev. 43, 384 (1979).CrossRefGoogle Scholar
16. Thauer, R.K. and Schonheit, P., in Iron-Sulfur Proteins, edited by Spiro, T.G. (Wiley Interscience Publications, New York, 1982) pp. 332341.Google Scholar
17. Siegel, L.M. and Davis, P.S., J. Biol. Chem. 249, 1587 (1974).CrossRefGoogle Scholar
18. Jones, H.E., Trudinger, P.A., Chambers, L.A., and Pyliotis, N.A., Z. allg. Mikrobiol. 16, 425 (1976).Google Scholar
19. Issatchenko, B.L., Bull. Jard. Inmp. Bot., St. Petersburg Vol. XII (1912); Int. Rev. ges. Hydrobiol. Hydrogr. 22, 99 (1929).Google Scholar
20. Blakemore, R.P., Science 190, 377 (1975); Ann. Rev. Microbiol. 36, 217 (1982).Google Scholar
21. Balkwill, D.L., Maratea, D., and Blakemore, R.P., J. Bacteriol. 141, 1399 (1980).CrossRefGoogle Scholar
22. Frankel, R.B., Ann. Rev. Biophys. Bioeng. 13, 85 (1984).Google Scholar
23. Frankel, R.B., Blakemore, R.P., and Wolfe, R.S., Science 203, 1355 (1979); K.M. Towe and T.T. Moench, Earth Planet. Sci. Lett. 52, 213 (1981); T. Matsuda, J. Endo, N. Osakube, A. Tonomura, and T. Arii, Nature 302, 411 (1983); S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. Roy. Soc. Lond. B 231, 469 (1987); D.A. Bazylinski, R.B. Frankel, and H.W. Jannasch, Nature 333, 518 (1988); N.H.C. Sparks, S. Mann, D.A. Bazylinski, D.R. Lovley, H.W. Jannasch, and R.B. Frankel, Earth Planet. Sci. Lett. 98, 14 (1990).Google Scholar
24. Farina, M., Lins de Barros, H.G.P., Motta de Esquivel, D., and Danon, J., Biol. Cell. 48, 85 (1983).Google Scholar
25. Rodgers, F.G., Blakemore, R.P., Blakemore, N.A., Frankel, R.B., Bazylinski, D.A., Maratea, D., and Rodgers, C., Arch. Microbiol. 154, 18 (1990).Google Scholar
26. Bazylinski, D.A., Frankel, R.B., Garratt-Reed, A., and Mann, S., in Iron Biominerals, edited by Frankel, R.B. and Blakemore, R.P. (Plenum Publishing Corporation, New York, 1990), in press.Google Scholar
27. Farina, M., Esquivel, D.M.S., and Lins de Barros, H.G.P., Nature 343, 246 (1990).CrossRefGoogle Scholar
28. Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A., and Jannasch, H.W., Nature 343, 258 (1990).CrossRefGoogle Scholar
29. Heywood, B.R., Bazylinski, D.A., Garratt-Reed, A., Mann, S., and Frankel, R.B., Naturwissenschaften, in press.Google Scholar
30. Mann, S., J. Inorg. Chem. 28, 363 (1986).Google Scholar
31. Gorby, Y.A., Beveridge, T.J., and Blakemore, R.P., J. Bacteriol. 170, 834 (1988).Google Scholar
32. Maratea, D. and Blakemore, R.P., Int. J. Syst. Bacteriol. 31, 452 (1981).Google Scholar
33. Towe, K.M. and Moench, T.T., Earth Planet Sci. Lett. 52, 213 (1981); S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. R. Soc. Lond. B 231, 469 (1987).CrossRefGoogle Scholar
34. Mann, S., in Magnetite Biomineralization and Magnetoreception in Organisms, edited by Kirschvink, J.L., Jones, D.S., and Macfadden, B.J. (Plenum Publishing Corporation, New York, 1985), p. 311.Google Scholar
35. Skinner, B.J., Erd, R.C., and Grimaldi, F.S., Amer. Mineral. 49, 543 (1964).Google Scholar
36. Spender, M.R., Coey, J.M.D., and Morrish, A.H., Can. J. Phys. 50, 2313, (1972).Google Scholar
37. Williams, R.J.P., Nature 343, 213 (1990).Google Scholar
38. Hartman, H., J. Mol. Evol. 4, 359 (1975); 38. G. Wächtershäuser, Microbiol. Rev., 52, 452 (1988); System. Appl. Microbiol., 10, 207 (1988); Proc. Nat. Acad. Sci. USA, 87, 200 (1990).Google Scholar
39. Stolz, J.F., Lovley, D.R., and Haggerty, S.E., J. Geophys. Res. 95, 4355 (1990).CrossRefGoogle Scholar
40. Jedwab, J., Soc. Belg. Geol. Bull. 76, 1 (1967); C.I. Dell, Amer. Mineral. 57, 1303 (1972); R.A. Berner, in The Black Sea- Geology, Chemistry, Biology, AAPG Memoir 20 (1974); A. Demitrack, in Magnetite Biomineralization and Magnetoreception in Organisms, edited by J.L. Kirschvink, D.S. Jones, and B.F. Macfadden (Plenum Publishing Corporation, New York, 1985), p. 625; J.W. Morse, F.J. Millero, J.C. Cornwall, and D. Rickard, Earth-Sci. Rev. 24, 1 (1987).Google Scholar
41. Swider, K.T. and Mackin, J.E., Geochim. Cosmochim. Acta 53, 2311 (1989).CrossRefGoogle Scholar
42. Kelly, D.P. and Harrison, A.P., in Bergey's Manual of Systematic Bacteriology, Vol.3, edited by Staley, J.T., Bryant, M.P., Pfennig, N., and Holt, J.G. (Williams and Wilkins, Baltimore, MD, 1989) p. 1842.Google Scholar