Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T04:13:46.956Z Has data issue: false hasContentIssue false

Biaxially Stretchable Transparent Conductors That Use Metallic Single-Walled Carbon Nanotube Films

Published online by Cambridge University Press:  10 April 2013

Xinning Ho
Affiliation:
Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
Ju Nie Tey
Affiliation:
Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
Wenjun Liu
Affiliation:
School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798
Chek Kweng Cheng
Affiliation:
Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
Jun Wei
Affiliation:
Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
Get access

Abstract

Transparent electronic devices that retain their electrical properties upon stretching and twisting are envisioned to be used in transparent wearable electronics and stretchable displays. An integral part of stretchable transparent electronic devices is the stretchable transparent conductor. In this work, we demonstrate biaxially stretchable transparent conductors that use metallic single-walled carbon nanotube films. Two dimensionally buckled metallic single-walled carbon nanotube films are realized. The “wavy” film “flattens out” when stretched and its electrical resistance hardly changes up to 3% applied strain. A similar film without any buckled structures suffers a severe degradation in electrical conductivity. Besides exhibiting stretchability, these transparent conductors display good sheet resistance (down to 3 kΩ/□) and transmittance (∼ 80% at a wavelength of 550 nm).

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Khang, D.-Y., Rogers, J.A., Lee, H.H., Adv. Funct. Mater. 2008, 18, 1.Google Scholar
Sekitani, T., Someya, T., Adv. Mater. 2010, 22, 2228.CrossRefGoogle Scholar
Park, S.I., Le, A.P., Wu, J., Huang, Y., Li, X., Rogers, J.A., Adv. Mater. 2010, 22, 3062.CrossRefGoogle Scholar
Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T., Nat. Mater. 2009, 8, 494.CrossRefGoogle Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 2010, 327, 1603.CrossRefGoogle Scholar
Service, R.F., Science 2004, 304, 675.CrossRefGoogle Scholar
Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J, Science 2000, 287, 836.CrossRefGoogle Scholar
Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B. lll, Xiao, J., Wang, S., Huang, Y., Rogers, J.A., Nature 2008, 454, 748.CrossRefGoogle Scholar
Wagner, S., Bauer, S., MRS Bull 2012, 37, 207.CrossRefGoogle Scholar
Lipomi, D.J., Vosgueritchian, M., Tee, B.C-K., Hellstrom, S.L., Lee, J.A., Fox, C. H., Bao, Z., Nat. Nanotechnol. 2011, 6, 788.CrossRefGoogle Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T., Science 2008, 321, 1468.CrossRefGoogle Scholar
Shin, M.K., Oh, J., Lima, M., Kozlov, M.E., Kim, S.J., Baughman, R.H., Adv. Mater. 2010, 22, 2663.CrossRefGoogle Scholar
Zhang, Y., Sheehan, C.J., Zhai, J., Zou, G., Luo, H., Xiong, J., Zhu, Y.T., Jia, Q.X., Adv. Mater. 2010, 22, 3027.CrossRefGoogle Scholar
Liu, K., Sun, Y., Liu, P., Lin, X., Fan, S., Jiang, K., Adv. Funct. Mater. 2011, 21, 2721.CrossRefGoogle Scholar
Hu, L., Yuan, W., Brochu, P., Gruner, G., Pei, Q., Appl. Phys. Lett. 2009, 94, 161108.CrossRefGoogle Scholar
Kim, K.H., Vural, M., Islam, M.F., Adv. Mater. 2011, 23, 2865.CrossRefGoogle Scholar
Huang, S., Li, L., Yang, Z., Zhang, L., Saiyin, H., Chen, T., Peng, H., Adv. Mater. 2011, 23, 4707.CrossRefGoogle Scholar
Chun, K.-Y., Oh, Y., Rho, J., Ahn, J.-H., Kim, Y.-J., Choi, H.R., Baik, S., Nat. Nanotechnol. 2010, 5, 853.CrossRefGoogle Scholar
Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K., Nat. Nanotechnol. 2011, 6, 296.CrossRefGoogle Scholar
Huang, Y.Y., Terentjev, E.M., Adv. Funct. Mater. 2010, 20, 4062.CrossRefGoogle Scholar
Zhu, Y., Xu, F., Adv. Mater. 2012, 24, 1073.CrossRefGoogle Scholar
Khang, D.-Y., Xiao, J., Kocabas, C., MacLaren, S., Banks, T., Jiang, H., Huang, J.J., Rogers, J.A., Nano Lett. 2008, 8, 124.CrossRefGoogle Scholar
Xu, F., Wang, X., Zhu, Y., Zhu, Y., Adv. Funct. Mater. 2012, 22, 1279.CrossRefGoogle Scholar
Choi, W.M., Song, J., Khang, D.-Y., Jiang, H., Huang, Y.Y., Rogers, J.A., Nano Lett. 2007, 7, 1655.CrossRefGoogle Scholar
Jiang, H., Liu, B., Huang, Y., Hwang, K.C., J Eng Mater-T ASME. 2004, 126, 265.CrossRefGoogle Scholar
Polymer Data Handbook, Mark, J., Oxford Univ. Press, New York (1999)Google Scholar