Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T10:13:46.297Z Has data issue: false hasContentIssue false

Bimetallic Alloy of Fe2O3-Ag Nanoparticles: Characterization and Structural Modeling

Published online by Cambridge University Press:  22 July 2016

A. Ruíz-Baltazar*
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001,76230 Santiago de Querétaro, QRO, México.
R. Esparza
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001,76230 Santiago de Querétaro, QRO, México.
J.L López-Miranda
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana, C.U. C.P: 77000, Morelia, México.
G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana, C.U. C.P: 77000, Morelia, México.
R. Pérez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001,76230 Santiago de Querétaro, QRO, México.
Get access

Abstract

The synthesis of Fe3O4-Ag bimetallic nanoparticles by chemical reduction was carried out. Fe nanoparticles were obtained using Fe (III) Chloride hexahydrate (FeCl3•6H2O) as precursor and sodium borohydride (NaBH4) as reducing agent, subsequently, a solution of silver nitrate (AgNO3) was added to the reaction. The synthesis methodology employed in this case, is a modification of chemical reduction method. Through this procedure has been possible simplify the synthesis route used to obtain bimetallic systems such as Fe3O4-Ag. Particles with semi-spherical morphology were observed. High-resolution transmission electron microscopy (HREM), ultraviolet visible spectroscopy (UV-is) and quasi-elastic light scattering (QELS) techniques were employed for the structural characterization of Fe3O4-Ag nanostructures. Some models presented describe and prove the formation of the Fe3O4-Ag alloy type structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Heng, Y., Min, C., Philip, M.R., Nano lett. 5, (2005).CrossRefGoogle Scholar
Elsukova, A., Li, Z., Moller C, C., Spasova, M.. Phys. Status Solidi A. 6, (2011).Google Scholar
Liu, C.H., Z, Zhou, D.. Inorg Mater. 44, (2008).CrossRefGoogle Scholar
Chudasama, B., Vala, A.K.. Nano Res. 2, (2009).CrossRefGoogle Scholar
Zhang, L., Dou, Y., H.C. J Colloid and Interface Sci. 297, (2006).Google Scholar
Frey, N.A., Phan, M.H., Srikanth, H.. J. Appl phys. 105, (2009).CrossRefGoogle Scholar
Dickson, K., Kirui, K., Rey, A., A Batt. Nanotechnology. 21, (2010).Google Scholar
Haratifar, E., Shahverdi, H.R.. J Nanomat. 96202, (2009).Google Scholar
Zhai, Y., Jin, L., Wang, P.. Chem Comm. 47, (2011).Google Scholar
Jiao, S., Chen, Y., Xu, M., Zhang, Y.. Mater Lett. 64, (2010).CrossRefGoogle Scholar
Figueroa, A., Di Corato, R., Manna, L., Pellegrino, T.. Pharmacol Res. 62, (2010)Google Scholar
Wu, W., He, Q., Jiang, C.. Nanoscale Res Lett. 3, (2008)Google Scholar
Tamer, U., Gundogdu, Y., Boyacı, H.I., Pekmez, K.. J. Nanopart Res. 12, (2010)CrossRefGoogle Scholar
Xu, C., Yuan, Z., Kohler, N., Kim, J., J. Am. Chem. Soc, 131, (2009)Google Scholar
Zhao, N., Li, L., Huang, T., Qi, L.. Nanoscale, 2, (2010)Google Scholar
Selvakannan, P.R., Swami, A.. Langmuir. 20, (2004)Google Scholar
Ban, Z., Barnakov, Y.A., F. J. Mater Chem. 15, (2005)Google Scholar
Sun, Y. P., Li, X.Q., Cao, J., Zhang, W.X., Wang, H.P., Adv Colloid and Interf Sci, 120, (2006)CrossRefGoogle Scholar
Lung, H., Welliot, D., Pang, Y., J Environ Eng. 16, (2006).Google Scholar
Nurmi, J.T., Paul, G., Tratnyek, S.V., Donald, R., Environ Sci Technol. 39, (2005)CrossRefGoogle Scholar