Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-04T05:30:50.752Z Has data issue: false hasContentIssue false

Boron and Phosphorus Ion Implantation In a-SixC1−x:H Thin Films

Published online by Cambridge University Press:  16 February 2011

R. Rizzoli
Affiliation:
CNR-Lamel, via Gobetti 101, 40129 Bologna, Italy
R. Galloni
Affiliation:
CNR-Lamel, via Gobetti 101, 40129 Bologna, Italy
C. Summonte
Affiliation:
CNR-Lamel, via Gobetti 101, 40129 Bologna, Italy
F. Demichelis
Affiliation:
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
C.F. Pirrp
Affiliation:
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E. Tresso
Affiliation:
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
G. Crovini
Affiliation:
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
P. Rava
Affiliation:
Elettrorava S.p.A., via Don Sapino 176, 10040 Savonera (Torino), Italy
F. Zignani
Affiliation:
Facolta’ di Ingegneria, Universita’ di Bologna, 40100 Bologna, Italy.
Get access

Abstract

In this paper we report results on the optoelectronic and structural properties of device-quality a-SixC1−x:H intrinsic films with energy gap of 1.94 eV and Urbach energy of 70 MeV, grown by PECVD of SiH4+CH4 Mixture, which have been doped by means of boron or phosphorus ion implantation. Doping levels varied in the range 1018 to 5×1020 atoms/cm3. The behaviour of electrical characteristics, as well as energy gap and defect density, Measured on samples annealed in the range 150–400°C, showed that the optimum annealing temperature for the recovery of radiation damage is in the range 250–270°C independent of the implanted dose. Our results also show that after ion implantation and annealing, an increase of the SiH bonds concentration is detected, which is associated to a decrease of the contribution of SiH2, SiCH3, and SiCH vibrations in IR spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, Y. in AMorphous Silicon Technology, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K., LeComber, P.G. (Mat. Res. Soc. Proc. 297, 1993) p. 803 Google Scholar
2. Demichelis, F., Galloni, R., Pirri, C.F., Rizzoli, R., Summonte, C., Tresso, E. in AMorphous Silicon Technology, edited by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madan, A. and Schiff, E. (Mat. Res. Soc. Symp. Proc. 258, 1992) p. 93 Google Scholar
3. Bullot, J. and Schmidt, M.P., Phys. Stat. Sol. 143, 345 (1987).Google Scholar
4. Wyrsch, N., Finger, F., Mcmahon, T.J., and Vanecek, M., J. Non-Cryst. Sol. 137&138, 347 (1991).Google Scholar
5. Demichelis, F., Pirri, C.F., Tresso, E., Delia Mea, G., Rigato, V., Rava, P., Semicond. Sci. Technol. 6, 1141 (1991)Google Scholar