Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T00:56:13.967Z Has data issue: false hasContentIssue false

Cesium-Enhanced R. F. Magnetron Deposition of Carbon Nitride and Diamond-Like Carbon Films

Published online by Cambridge University Press:  10 February 2011

I. H. Murzin
Affiliation:
Structured Materials Industries, Inc., 120 Centennial Ave., Piscataway, NJ 08854–3900
M. A. Hussain
Affiliation:
Structured Materials Industries, Inc., 120 Centennial Ave., Piscataway, NJ 08854–3900
G. S. Tompa
Affiliation:
Structured Materials Industries, Inc., 120 Centennial Ave., Piscataway, NJ 08854–3900
Get access

Abstract

We report the design, manufacturing, and testing of a new cesium enhanced negative carbon ion source that can be useful to synthesize hard and/or electron emitting carbon nitride and diamond-like carbon (DLC) thin films. The design of the source includes a conventional magnetron-sputtering gun, low voltage ion extraction lenses, and a cesium oven to provide cesium vapor for formation of a fractional mono layer of Cs on the carbon target. Cs reduces the surface work function of the carbon target and enhances the emission of negative carbon ions. Argon and argon-nitrogen gas mixtures were used to ignite and sustain the plasma in the chamber. We compare the properties of carbon nitride and DLC films deposited with and without cesium. Nitrogen composition in the Ar-N2 gas mixture was observed to be an important process parameter affecting mechanical properties of the film. The effect of the Cs oven temperature on deposition rate and current absorbed at the substrate was also investigated for RF powers from 0 to 150 W.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohen, M. L., Phys. Rev. B 32, 7988 (1985).Google Scholar
2. Knittle, E., Nature 337, 349 (1989).Google Scholar
3. Liu, A. Y. and Cohen, M. L., Science 41, 841 (1989).Google Scholar
4. Guo, H. Y. and Ching, W. Y., Phys. Rev. B 50, 11231 (1994).Google Scholar
5. Teter, D. M. and Hamley, R. J., Science 271, 53 (1996).Google Scholar
6. Han, H. X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).Google Scholar
7. Sekine, T., Kanda, H., Bando, Y., and Yokoyama, M., J. Mater Sci. Lett. 9, 1375(1990).Google Scholar
8. Yang, Y. W. and Nelson, K. A., J. Mater. Res. 10, 41 (1995).Google Scholar
9. Wixom, M. R., J. Am. Ceram. Soc. 173, 1973 (1990).Google Scholar
10. Maya, L., Cole, D. R., and Hagman, E. W., J. of Am. Ceram. Soc. 74 (7), 1686 (1991).Google Scholar
11. Murzin, I. H., Tompa, G. S., Forsythe, E. W., and Wei, J., J. Vac. Sci. & Tech. A15 (3), 1179(1997).Google Scholar
12. Murzin, I. H., Tompa, G. S., Wei, J., Murato, V, and Fisher, T., Mat. Res. Soc. Proc. 438, 569 (1997).Google Scholar
13. Niu, C. M., Liu, Y. Z., and Lieer, C. M., Science 261, 334 (1993).Google Scholar
14. Ren, Z. M., Du, Y. C., Qiu, Y. X., Wu, J. D., Ying, Z. F., Xiong, X. X., and Li, F. M., Phys. Rev. B 51, 5274 (1995).Google Scholar
15. Chen, Y., Guo, L. P., and Wang, E. G., J. Phys. Condense Matt. 8, 685 (1996).Google Scholar
16. Chen, Y., Guo, L. P., and Wang, E. G., Philo. Mag. Lett 75 (3), 155 (1997).Google Scholar
17. Chen, Y., Guo, L. P., and Wang, E. G., J. Crystal Growth 179, 515 (1997).Google Scholar
18. Chen, Y., Guo, L. P., and Wang, E. G., Mater. Sci. lett. 16, 594 (1997).Google Scholar
19. Tompa, G. S., Murzin, I. H., Kim, S. I., Ahn, Y. O., Gallois, B., Fisher, T. E., and Forsythe, E. W., Mat. Res. Soc. Symp. Proc. 396, 545 (1996).Google Scholar
20. Kim, S. I., SKION Corporation, Hoboken, NJ.Google Scholar
21. Ishikawa, J., Tsuji, H., Okada, Y., Shinoda, M., and Gotoh, Y., Vacuum 44 (3/4), 203 (1993).Google Scholar
22. Ishikawa, J., Rev. Sci. Instrum. 65 (4), 1290 (1994).Google Scholar
23. Tompa, G. S., Lopes, J. L., and Wohlrab, G., Rev. Sci. Instrum. 58 (8), 1536 (1987).Google Scholar
24. Tompa, G. S., Carr, W. E., and Seidl, M., Appl. Phys. Lett. 48 (16), 1048 (1996).Google Scholar
25. Pargellis, A. and Seidl, M., J. Vac. Sci. & Technol. A1 (3), 1388 (1982).Google Scholar
26. Tompa, G. S., Shen, D., Zhang, C., Murzin, I. H., Gallois, B., Liang, S., Gorla, C. R., and Chen, Y., Mater. Res. Soc. Symp. Proc, in press.Google Scholar