Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T03:41:04.924Z Has data issue: false hasContentIssue false

Characterization of Modulation Doped Pseudomorphic AlGaAs/InGaAs/GaAs Hemt Structures by Electron Beam Electroreflectance and Photoluminescence

Published online by Cambridge University Press:  28 February 2011

M. H. Herman
Affiliation:
Charles Evans & Associates, Redwood City, CA 94063
I. D. Ward
Affiliation:
Charles Evans & Associates, Redwood City, CA 94063
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We have investigated the optical transitions present in MBE-grown modulation doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/ GaAs HEMT structures of 120Å InGaAs thickness, y values 0 to 0.28, and x values 0.20 to 0.30. From both 300K electron beam electroreflectance (EBER) and 4K photoluminescence (PL) measurements we observe transitions from the InGaAs strained quantum well layer. The intensity and lineshape of the InGaAs transition in both optical spectra are affected by processing temperatures, and provides an indication of the quality of the HEMT.

In addition to strong, sharp features arising from the GaAs substrate and the superlattice buffer, the EBER data shows important characteristics of the AlGaAs layer which are unavailable from the PL. The latter include the presence of Franz-Keldysh oscillations, from which the crystal quality, composition, and electric field strength within the AlGaAs can be assessed. Specifically, when the growth temperatures are excessive, the disappearance of the Franz-Keldysh oscillations appears to be associated with outdiffusion of In from the strained layer, and consequent deterioration of active device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Unlu, H. & Morkoc, H., Solid State Tech. 83–87, March 1988.Google Scholar
2 See the papers by Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A. & Vallin, J. T., Phvs. Rev. B37 (8), 40324038, 1988. D. A. H. Mace, D. C. Rogers, K. J. Monserrat, J. N. Tothill & S. T. Davey, Semlcond. Scl. Technol.3 597-600, 1988. J.-Z. Marzin, M. N. Charasse & B. Sermage, Phvs. Rev.B31(12). 8298-8301, 1985.Google Scholar
3Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A. & Vallin, J. T., Phvs. Rev. B37 (8). 40324038, 1988.Google Scholar
4Ji, G., Reddy, U. K., Henderson, T. S., Houdre, R. & Morkoc, H., J. Appl. Phvs. 62 (8), 33663373, 1987.Google Scholar
5Pan, S. H., Shen, H., Hang, Z., Pollak, F. H., Zhuang, W. & Xu, Q., SPIE 943 Quantum Well and Superlattice Physics II 150 (1988).Google Scholar
6Tober, R. L., Pamulapati, J., Bhattacharya, P. K. & Oh, J. E., Journal of Electronic Materials 18 (3)379384, 1989.Google Scholar
7Jones, E. D., Schirber, J. E., Fritz, I. J., Gourley, P. L., Biefeld, R. M., Dawson, L. R. & Drummond, T. J., Mat. Res. Soc. Svmp. 56 241, (1986).Google Scholar
8Raccah, P. M., Garland, J. W., Buttrill, S. E. Jr., Franke, L. & Jackson, J., Appl. Phvs. Lett. 52 (19)1584, 1988.Google Scholar
9 “Acceptably high” is taken by the authors to mean 77K mobilities exceeding 40,000 cm2/V-sec for the present structures.Google Scholar
10Tober, R. L., Pamulapati, J., Bhattacharya, P. K. & Oh, J. E., Journal of Electronic Materials 18 (3)379384, 1989.Google Scholar
11Aspnes, D. E., Phvs. Rev. B 10 (10), pp42284238, 1974.Google Scholar
12Aspnes, D. E., Surface Science 37 pp. 418442, 1973.Google Scholar
13Dodabalapur, A., Kesan, V. P., Neikirk, D. P., Streetman, B., Herman, M. H. & Ward, I. D., presented at the Electronic Materials Conference, Cambridge, MA June 21-23, 1989.Google Scholar