Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:24:17.042Z Has data issue: false hasContentIssue false

Characterization of Pzt Films by Scanning Force Microscopy (SFM)

Published online by Cambridge University Press:  10 February 2011

Genaro Zavala
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244–4100
Susan E. Trolier-McKinstry
Affiliation:
149 Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Janos H. Fendler
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, NY 13244–4100
Get access

Abstract

Scanning Force Microscopy (SFM) has been used for the determination of friction, phase transformation, piezoelectric behavior (contact mode), polarization state and dielectric constant (non contact mode) in several nanometer regions of Lead Zirconate Titanate (PZT) films. The use of the SFM tip, in the contact mode, to polarize different nanoregions of the film and to apply an oscillating field thereon, led to effective piezoelectric coefficients and piezoelectric loops. In the non-contact mode, application of an ac signal (frequency ω) to the tip-electrode system produced an oscillation of the tip at ω (fundamental or first harmonic) and 2ω (second harmonic). The signals ω and 2ω were related to the state of polarization and the dielectric constant of the film. Analysis of the combined contact, non-contact and friction force microscopic data have provided considerable insight into the piezoelectricity and polarization in the nanodomains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saurenbach, F. and Terris, B.D., Appl. Phys. Lett. 56, 1703 (1990).Google Scholar
2. Birk, H., Glatz-Reichenbach, J., Li-Jie, , Schreck, E. and Dransfeld, K., J. Vac. Sci. Technol. B 9, 1162 (1991).Google Scholar
3. Guthner, P. and Dransfeld, K., Appl. Phys. Lett. 61, 1137(1992).Google Scholar
4. Franke, K., Besold, J., Haessler, W. and Seegebarth, C., Surf. Sc. Lett. 302, L283 (1994).Google Scholar
5. Li-Jie, , Baur, C., Koslowski, B. and Dransfeld, K., Psysica B 204, 318 (1995).Google Scholar
6. Franke, K., submitted to Ferroelectrics Letters.Google Scholar
7. Luthi, R., Haefke, H., Grutter, P., Guntherodt, H.-J., Szczesniak, L. and Meyer, K.P., Surf Sc. Lett 285, L498 (1993).Google Scholar
8. Gibbons, B., M.S. Thesis, The Pennsylvania State University (1995).Google Scholar
9. Ascoli, C., Dinelli, F., Frediani, C., Petracchi, D., Salerno, M., Labardi, M., Allegrini, M. and Fuso, F., J. Vac. Technol. B 12, 1642 (1994).Google Scholar
10. Zavala, G., Trolier-McKinstry, S. E. and Fendler, J. H., to be published.Google Scholar
11. Sawyer, C.B. and Tower, C.H., Phys. Rev. 35, 269 (1930).Google Scholar
12. Labardi, M., Allegrini, M., Leccabue, F., Watts, B.E., Ascoli, C. and Frediani, C., Solid State Com. 91, 59 (1994).Google Scholar
13. Tuttle, B. A., Schwartz, R. W., Doughty, D. H. and Voigt, J. A., Mat. Res. Soc. Symp. Proc. 200, 159 (1990).Google Scholar
14. Lefki, K. and Dormans, G. J. M., J. Appl. Phys. 76, 1764 (1994).Google Scholar
15. Tjhen, W., Tamagawa, T., Ye, C. P., Hsueh, C. C., Shiller, P. and Polla, D. L., Proc. of the 4th IEEE Workshop on Micro Electro Mechanical Systems (MEMS ‘91), Nara, Japan, 114 (1991).Google Scholar
16. Lorrain, P., Corson, D., ”Electromagnetic Fields and Waves “, W. H. Freeman and Company, Second Edition, New York, NY, 1970, p. 150.Google Scholar
17. Martin, Y, Abraham, D. W. and Wickramasinghe, H. K., Appl. Phys. Lett. 52, 1103 (1988).Google Scholar