Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T22:23:21.627Z Has data issue: false hasContentIssue false

Characterization of Transparent Conducting Pulsed Laser Deposited Films in the Indium Zinc Oxide System

Published online by Cambridge University Press:  16 February 2011

A. Rougier
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
N. Naghavi
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
C. Marcel
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
F. Portemer
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
L. Dupont
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
C. Guéry
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
J.M. Tarascon
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
Get access

Abstract

Thin films of indium zinc oxide so called IZO were prepared with pulsed laser deposition. It was found that the crystalline structure, the composition and the morphology of the films as well as the optical and electrical properties were quite sensitive to the deposition conditions namely to the temperature and oxygen pressure. The crystallinity of the ZnkIn2O3+k (k from 1 to 5) thin films increases as the substrate temperature increases. An average transmittance of 85 % in the visible region was obtained for any k values. Optical measurements show a continuous decrease of the band gap as the zinc amount increases. The highest conductivity reported is for the ZnIn2O4, thin films deposited at 300 °C (σ = 1.2 103 S/cm). Increasing the amount of Zn (i.e. k value) was found to result in a conductivity decrease. Finally, a good correlation between the electric mobility and the optical mobility is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Palmer, G.B., Poeppelmeier, K.R., and Mason, T.O., Chem. Mater., 9, 3121 (1997).Google Scholar
2. Jin, Z.C., Hamberg, I., and Granqvist, C.G., J. Appl. Phys., 64 (10), 5117 (1988).Google Scholar
3. Edwards, D.D., Mason, T.O., Goutenoire, F., and Poeppelmeier, K.R., Appl. Phys. Lett., 70 (13), 1706 (1997).Google Scholar
4. Wang, R., King, L.L.H., and Sleight, A.W., J. Mater. Res., Vol 11, 7, 1659 (1996).Google Scholar
5. Wu, X., Coutts, T.J., and Milligan, W.P., J. Vac. Sci. Technol. A, 15 (3), 1057 (1997).Google Scholar
6. Ning, Z.Y., Cheng, S.H., Ge, S.B., Chao, Y., Gang, Z.Q., Zhang, Y.X., and Liu, Z.G., Thin Solid Films 307, 50 (1997).Google Scholar
7. Minami, T., Takata, S., Kakumu, T., and Sonohara, H., Thin Solid Films, 270, 22 (1995).Google Scholar
8. Moriga, T., Edwards, D., Mason, T., Palmer, G., Poeppelmeier, K., Schindler, J., Kannewurf, C., and Nakabayashi, I., J. Am. Ceram. Soc., 81, 1310 (1998).Google Scholar
9. Takatsuji, H., Hiromori, T., Tsujimoto, K., Tsuji, S., Kuroda, K., and Saka, H., presented at the Material Research Society, Spring Meeting San Fransisco, 1998, Symposium B, Abstrat B9.5.Google Scholar
10. Minami, T., Kakumu, T., and Tanaka, S., J. Vac. Sci. Technol. A 14, 1704 (1996).Google Scholar
11. Goyal, D.J., Agashe, C., Takwale, M.G., and Bhide, V.G., J. Mater. Res. 8, 1052 (1993).Google Scholar
12. Wang, A., Dai, J., Cheng, J., Chudzik, M.P., Marks, T.J., Chang, R.P.H., and Kannewurf, C.R., Appl. Phys. Lett. 73, Vol. 3, 327 (1998).Google Scholar
13. Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajeewski, J.J., Marshall, J.H., Peck, W.F. Jr. and Rapkine, D.H., Appl. Phys. Lett. 67, 2246 (1995).Google Scholar
14. Smits, F.M., The Bell System Technical Journal, 711 (1958).Google Scholar
15. Minami, T., Sonohara, H., Kakumu, T., and Takata, S., J. Appl. Phys. Vol 34, L971 (1995).Google Scholar
16. Hamberg, I., and Granqvist, C.G., J. Appl. Phys. 60 (11), R123 (1986).Google Scholar
17. Major, S., Banerjee, A., and Chopra, K.L., Thin Solid Films, 108, 333 (1983).Google Scholar