Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-21T14:23:37.441Z Has data issue: false hasContentIssue false

Characterization of Undoped Pseudomorphic InGaAs/GaAs Quantum Wells by Electron Beam Electroreflectance (EBER) and Photoluminescence (PL)

Published online by Cambridge University Press:  28 February 2011

M. H. Herman
Affiliation:
Charles Evans & Associates, Redwood City, CA 94063
A. Dodabalafur
Affiliation:
The University of Texas, Austin, TX 78712
I. D. Ward
Affiliation:
Charles Evans & Associates, Redwood City, CA 94063
B. G. Streetman
Affiliation:
The University of Texas, Austin, TX 78712
Get access

Abstract

We have investigated the interband optical transitions within undoped pseudomorphic InyGa1-yAs/GaAs quantum wells of a range of thickness from 50Å to 150Å, and y values 0.1 to 0.2. From photoluminescence (PL), we identify the lowest interband transitions. Electron beam electroreflectance (EBER) modulation spectroscopy is utilized to detect the lowest and the higher energy interband transitions within the quantum wells. We compare the measured interband energies to those calculated theoretically.

We have observed exciton-like transitions attributable to the heavy hole and light hole levels and most importantly, confined states of the split-off valence band, not reported to date. The multiplicity of observed quantum transitions allows rectangular barrier model parametrization of these wells, using hypothetical strain splitting of the various subbands. For five such quantum wells, we find the estimated indium contents and well widths to be nearly nominal, with consistent values between independent 300K and 100K data. With respect to the heavy hole subband, the conduction band offset Qc is estimated to be 0.586 ±0.024. With suitable values, all of the transitions, including those of the splitoff band, are predicted accurately.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ji, G., Reddy, U. K., Henderson, T. S., Houdre, R. & Morkoç, H., J. Appl. Phys. 62 (8), 3366, 1987.Google Scholar
2Pan, S. H., Shen, H., Hang, Z., Pollak, F. H., Zhuang, W. & Xu, Q., Roth, A. P., Masut, R. A., Lacelle, C., Morris, D., SPIE 943 Quantum Well and Superlattice Physics II, 150, (1988).Google Scholar
3Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A. & Vallin, J. T., Phvs. Rev. B37 (8), 4032, 1988.Google Scholar
4Marzin, J.-Z., Charasse, M. N. & Sermage, B., Phys. Rev. B31 (12), 8298, 1985.Google Scholar
5 In keeping with the nomenclature of earlier authors, Qc is defined as the ratio of the conduction band well depth D to the sum of Dc and DHh, the well depth for the heavy hole.Google Scholar
6Joyce, M. J., Johnson, M. J., Gal, M., and Usher, B. F., Phys. Rev. B38 (15), 10978, 1988.Google Scholar
7 See for example Herman, M. H., Ward, I. D., Buttrill, S. E. Jr. and Francke, G. L., “Characterization of III-V Semiconductor Structures Using Electron Beam Electroreflectance (EBER) Spectroscopy,” to be published in MRS Vol 144. Also see M. H. Herman and I. D. Ward, “Characterization of GaAs-based Heterostructures Using Electron Beam Electroreflectance (EBER) Spectroscopy.” to be published in the proceedings of the 16th International GaAs and Related Materials Conference, Karuizawa Japan, 1989.Google Scholar
8Herman, M. H., Ward, I. D., Kopf, R., Pearton, S. J., and Jones, E. D., “Characterization of modulation doped pseudomorphic AlGaAs/InGaAs/GaAs HEMT structures by Electron Beam Electroreflectance and Photoluminescence,” to be presented and published at the 1989 Fall Materials Research Society Meeting, Boston, MA.Google Scholar
9Raccah, P. M., Garland, J. W., Zhang, Z., Chambers, F. A. & Vezzetti, D. J., Phvs. Rev. B36, 4271, 1987.Google Scholar
10Mattord, T. J., Kesan, V. P., Crook, G. E., Block, T. R., Campbell, A. C., Neikirk, D. P., and Streetman, B. G., J. Vac. Sci & Technol. B6, 1667 (1988).Google Scholar
11Dodabalapur, A., Kesan, V. P., Block, T. R., Neikirk, D. P., and Streetman, B. G., J. Vac. Sci & Technol. B7, 380 (1989).Google Scholar
12Raccah, P. M., Garland, J. W., Buttrill, S. E. Jr., Franke, L. & Jackson, J., Appl. Phys. Lett. 52 (19)1584, 1988.Google Scholar
13Huang, K. F., Tai, K., Chu, S. N. G., & Cho, A. Y., Appl. Phys. Lett. 54 (20)2027, 1989.Google Scholar
14Livescu, G., Miller, D. A. B., Chemla, D. S., Ramaswamy, M., Chang, T. Y., Sauer, N., Gossard, A. C. and English, J., IEEE J. Quantum Electron. 24, 1677 (1988).Google Scholar
15Mendez, E. E., Chang, L. L., Landgren, G., Ludeke, R., Esaki, L. & Pollak, F., Phvs. Rev. Lett. 46 (18)12301234, 1981.Google Scholar