Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-08T23:19:41.388Z Has data issue: false hasContentIssue false

Characterization of Voids in Rutile Nanoparticles by Transmission Electron Microscopy

Published online by Cambridge University Press:  21 February 2011

S. Turner*
Affiliation:
Surface and Microanalysis Science Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, D 20899, hirley.tumer@nist.gov
Get access

Abstract

Rutile nanoparticles containing voids or cavities have been characterized using transmission electron microscopy. The general morphology of the voids has been determined from images of nanoparticles in different orientations. In general, the longest dimension is along the c axis of rutile. Many of the voids show a prismatic morphology with dipyramid terminations. The prism consists of primarily four {110} faces with rounded or faceted comers between the primary faces. The pyramidal terminations can appear ovoid or faceted. A major facet plane of the pyramids is (101). A model consistent with the morphology of many voids in rutile nanoparticles is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A., and Honda, K., Nature 238, p. 37 (1972).Google Scholar
2. Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A., Envir. Sci. & Tech. 32, p. 726 (1998).Google Scholar
3. Beck, D.D. and Siegel, R.W., J. Mater. Res. 7, p. 2840 (1992).Google Scholar
4. Xu, Q. and Anderson, M.A., J. Am. Ceram. Soc. 77, p. 1939 (1994).Google Scholar
5. Barringer, E.A. and Bowen, H.K., J. Am. Ceram. Soc. 65 (12), p. C199 (1982).Google Scholar
6. Shirkhanzadeh, M., NanoStructured Mater. 5, p. 33 (1995).Google Scholar
7. Turner, S., Bonevich, J.E., Maslar, J.E., Aquino, M.I, Zachariah, M.R., in Nanophase and Nanocomposite Materials II, edited by Komarneni, S., Parker, J.C., and Wollenberger, H.J. (Mater. Res. Soc. Proc. 457, Pittsburgh, PA 1997).Google Scholar
8. Allard, L.F., Voelkl, E., Kalakkad, D.S., Datye, A.K., J. of Mater. Sci. 29, p. 5612 (1994).Google Scholar
9. Allard, L.F., Voelkl, E., Carim, A., Datye, A.K., and Ruoff, R., NanoStructured Mater. 7, p. 137 (1996).Google Scholar
10. Crozier, P.A., Sharma, R., and Datye, A.K., Micros. and Microan. 4, p. 278 (1998).Google Scholar
11. Andersson, S., Annehed, H., Stenberg, L., and Berger, R., J. Sol. St. Chem. 19, p. 169 (1976).Google Scholar
12. Wallenberg, L.R., Andersson, A. and Sanati, M., Ultramicros. 34, p. 33 (1990).Google Scholar
13. Choi, J.H., Kim, D.Y., Hockey, B.J., Wiederhorn, S.M., Handwerker, C.A., Blendell, J.E., Carter, W.C., and Roosen, A.R., J. Am. Ceram. Soc. 80, p. 62 (1997).Google Scholar
14. Klein, C. and Hurlbut, C.S., Manual of Mineralogy, 21st ed. (John Wiley and Sons, New York, 1993), p. 381.Google Scholar