Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T01:49:37.075Z Has data issue: false hasContentIssue false

Charge Transport in the Transition From Hydrogenated Amorphous Silicon to Microcrystalline Silicon

Published online by Cambridge University Press:  15 February 2011

A. Kattwinkel
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90024
R. Braunstein
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90024
G. Sun
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90024
Qi Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393
Get access

Abstract

The electronic transport properties of a series of samples prepared by hot-wire chemical vapor deposition with a transition from a-Si:H to μc-Si:H were measured applying the photoconductive frequency mixing technique. We found both improved stability against light-soaking and different values for the photomixing electron lifetime and mobility close to the onset of microcrystallinity as compared to the amorphous state. In particular, the mobility-lifetime product of charge carriers in some of the μc-Si:H samples turns out to lie about two orders of magnitude higher than that of a-Si:H films. The mobility on the other hand, is shown rather to decrease in the transition to the μc-region. Additional measurements of the range and the depth of long range potential fluctuations yield a possible explanation for our results in that grain boundaries may serve as scattering centers and barriers against recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvan, J.A. Anna, Vaucher, N. Pellton, Hof, Ch., Fischer, D., Keppner, H., Sha, A., Lifert, K. D., Giannulés, P., Koehler, J., MRS Symp. Proc. 420, p. 3 (1996).Google Scholar
2. Tsu, D.V., Cho, B.S., Ovshinsky, S.R., Guha, S. and Yang, J., Appl Phys. Lett. 71, p. 1317 (1997).Google Scholar
3. Wiesmann, H., Ghosh, A. K., McMahon, T., and Strongin, M., J. Appl. Phys. 50, p. 3752 (1979).Google Scholar
4. Matsumera, H.. Jpn. J Appl. Phys., Part 2, 25, p. L949 (1986).Google Scholar
5. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., and Lioret, A., Appl. Phys. A: Solids Surf. 59, p. 645 (1994).Google Scholar
6. Middya, A. R., Guillet, J., Perrin, J., Lioret, A., and Boirree, J.E. in Procedings of the 13th European Photovoltaic Solar Energy Conference, Nice 1995 edited by Freiesleben, W., Palz, W., Ossenbrink, H.A. and Helm, P. (H.S. Stephens & Associates, Bedford, U. K., 1995). p. 3.Google Scholar
7. Heintze, M., Zedlitz, R.., Wanka, H.N., and Schubert, M. B., J. Appl. Phys. 79, p. 2699 (1996).Google Scholar
8. Diehl, F., Herbst, W., Schrdder, B., Oechsner, H., MRS Symp. Proc. 467, p. 451 (1997).Google Scholar
9. Bruggemann, R., C Main Phys. Rev. D 57, p. R15080 (1998).Google Scholar
10. Geissinger, ER, Braunstein, R., Dong, S., and Martin, R., J. Appl. Physics 69, p. 1469 (1991).Google Scholar
11. Tang, Y., Braunstein, R., and Roedern, B. von, Appl. Phys. Lett. 63, p. 2393 (1992).Google Scholar
12. Tang, Y., Braunstein, R., Roedem, B. von, Shapiro, F.R.. Mater. Res. Soc. Symposium Proc. 297, p. 407 (1993).Google Scholar
13. Tang, Y. and Braunstein, R., Appl. Phys. Lett. 66, p. 721 (1995).Google Scholar
14. Tang, Y. and Braunstein, R., J. Appl. Phys. 79, p. 850 (1996).Google Scholar
15. Tang, Y., Dong, S., Braunstein, R., and Roedem, B. von, Appl. Phys. Lett. 68, p. 640 (1996).Google Scholar
16. Vaneck, M., Mahan, A. H., Nelson, B. P., Crandall, R. S., Proc. 11th European Photovoltaic Solar Engergy Conference edited by Guimares, L., Palz, W., Dereyff, C., Kiess, H., and Helm, P. (Harvard Acad. Publ., Switzerland, 1993), p. 96.Google Scholar
17. Branz, H. M. and Silver, M. Phys. Rev. B 42, p. 7420 (1990).Google Scholar