Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-10T13:26:24.983Z Has data issue: false hasContentIssue false

Chemical and Electronic Properties of Metal/Sb2Te3/CdTe Contacts for CdTe Thin Film Solar Cells Studied by Photoelectron Spectroscopy

Published online by Cambridge University Press:  01 February 2011

D. Kraft
Affiliation:
Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt, Germany
B. Späth
Affiliation:
Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt, Germany
A. Thißen
Affiliation:
Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt, Germany
A. Klein
Affiliation:
Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt, Germany
W. Jaegermann
Affiliation:
Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt, Germany
Get access

Abstract

Formation of low resistance back contacts in CdTe thin film solar cells has been a research issue for many years. Ohmic contacts to the absorber layer are typically prepared using the diffusion of dopant atoms from the back contact material into the CdTe forming a thin space charge layer that can be easily tunnelled. Stable CdTe solar cells with reasonable back contact characteristics have been prepared using metal/Sb2Te3 layer sequences. In this study the chemical and electronic properties of such layer systems have been investigated using photoelectron spectroscopy. The vacuum deposited Sb2Te3 layers do not react with the CdTe substrate. Band alignment does not indicate the formation of a good back contact. By subsequent deposition of metals a chemical reaction is induced forming metal-tellurides, a metal/Sb-alloy and elemental Sb. Although an Sb diffusion into the CdTe absorber is observed, no increase of p-doping in the surface region is evident.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chu, T.L., Current Topics in Photovoltaics 3, 235 (1988).Google Scholar
2. Zweibel, K., Mitchell, R., Advances in Solar Energy 6, 485 (1991).Google Scholar
3. Bloss, W.H., Pfisterer, F., Schubert, M., Walter, T., Prog. in Photovolt. Res. and Appl. 3, 11 (1995).Google Scholar
4. Bonnet, D., Harr, M., Proc. of the 2nd Int. Conf. on Photovolt. Sol. En. Conv. 1, 397 (1998).Google Scholar
5. Gordillo, G., Florez, J.M., Hernandez, L.C., Teherán, P., 1st Proc. of the WCPEC, 307 (1994).Google Scholar
6. Kraft, D., Weiler, U., Thissen, A., Tomm, Y., Klein, A., Jaegermann, W., Thin Solid Films (in press).Google Scholar
7. Ghosh, B., Purakayastha, S., Datta, P.K., Miles, R.W., Carter, M.J., Hill, R., Semicond. Sci. Technol. 10, 71 (1995).Google Scholar
8. Dobson, K.D., Visoly-Fisher, I., Hodes, G., Cahen, D., Sol. Energy Mater. Sol. Cells 62, 295 (2000).Google Scholar
9. Grecu, D., Compaan, A.D., Young, D., Jayamaha, U., Rose, D.H., J. Appl. Phys. 88, 2490 (2000).Google Scholar
10. Durose, K., Boyle, D., Abken, A., Ottley, C.J., Nollet, P., Degrave, S., Burgelman, M., Wendt, R., Beier, J., Bonnet, D., Phys. Stat. Sol. (b) 229, 1055 (2002).Google Scholar
11. Romeo, N., Bosio, A., Tedeschi, R., Romeo, A., Canevari, V., Sol. Energy Mater. Sol. Cells 58, 209 (1999).Google Scholar
12. Schmidt, T., Durose, K., Rothenhäusler, C., Lerch, M., Thin Solid Films 361, 383 (2000).Google Scholar
13. Abken, A.E., Sol. Energy Mater. Sol. Cells 73, 391 (2002).Google Scholar
14. Wei, S.H., Zhang, S.B., Physical Review B 66, 155211 (2002).Google Scholar
15. Chadi, D.J., Physical Review B 59, 15181 (1999).Google Scholar