Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T13:15:06.642Z Has data issue: false hasContentIssue false

Chemical and Structural Effects on Diamond C(111)-(2×1) Surface Exposed to F, H and Hydrocarbon Species

Published online by Cambridge University Press:  25 February 2011

Taro Yramada
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120–6099
T.J. Chuang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120–6099
H. Seki
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120–6099
Get access

Abstract

Adsorption and subsequent surface processes of hydrogen and hydrocarbon species on the diamond C(111)-(2×1) bare surface have been investigated by AES, XPS, LEED, TDS and laser non-linear spectroscopies (SHG and SFG) under ultrahigh vacuum condition. Extremely low coverage of atomic II causes the transition of the hare (2×1) surface to the (1×1) structure. Exposure of the. bare (2×1) surface to CIIx species from hot filament activated methane leads to the formation mainly of CH3 species. The conversion of the surface structure from (2×1) to (1×1) with exposure does take place but not as easily as for hydrogen. These studies are now being extended to adsorption of F by exposures to XeF2 There arc two stages of saturation for 17 adsorption on the C(111)-(2×1) surface. This is interpreted to indicate that there are at least two adsorption sites for the F atoms. Whereas adsorption of II atoms at coverages less than 5% of a monolayer causes the surface lattice transition from (2×1) to (1×1) structure, the (2×1) structure is retained at all levels of fluorine adsorption. However the C(111) (1×1) surface with over half a monolayer of II adsorption behaves quite differently with respect to F adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J. C. and Hayman, C. C., Science 241, 915 (1988).CrossRefGoogle Scholar
2. Bachmann, P.K. and Messier, R., C and EN 67(20), 24 (1989).Google Scholar
3. Patterson, D.E., Bai, B.J., Chu, C.J., Hauge, R.H. and Margrave, J.L., in New Diamond Science and Technology, (Proc. 2nd Int. Conf) ed. by Messier, R. and Glass, J.T. (Mat. Res. Soc., Pittsburgh, PA, 1991), p.433.Google Scholar
4. Patterson, D.E., Chu, C.J., Bai, B.J., Komplin, N.J., Hauge, R.H. and Margravc, I.L., in Applications of Diamond Films and Related Materials, ed. by Tzeng, Y., Yoshikawa, M., Murakawa, M. and Feldman, A. (Elsevier Science Publishers B.V., 1991), p.569.Google Scholar
5. Matsumoto, S., Sato, Y., Tsutsumi, M., and Sctaka, N., J. Mat. Sci. 17 3106 (1982).CrossRefGoogle Scholar
6. Matsumoto, S. and Matsui, Y., J. Mat. Sci. 18, 1785 (1983).CrossRefGoogle Scholar
7. Fujimori, N., Imai, T. and Doi, A., Vacuum 36, 99 (1986).CrossRefGoogle Scholar
8. Kamo, M., Yurimoto, H. and Sato, Y., Appl. Surf. Sci. 33/44, 553 (1988).CrossRefGoogle Scholar
9. Geiss, M.W., MRS Symp. Proc. 1 15 (1990).Google Scholar
10. Chu, C.J., D'Evelyn, M.P., Hauge, R.H. and Margaravc, J.L., J. Appl. Phys. 70, 1695 (1991).CrossRefGoogle Scholar
11. Lander, J.J. and Morrison, J., Surf. Sci. 4, 1 (1977).Google Scholar
12. Laurie, P.G. and Wilson, J.M., Surf Sci. 65, 453 (1977).Google Scholar
13. Waklawski, B.J., Pierce, D.T., Swanson, N. and Celotta, R.J., J. Vac. Sci. Tlechnol. 21, 368 (1982).Google Scholar
14. Pate, B.B., Surf. Sci. 165, 83 (1986).Google Scholar
15. Hamza, A.V., Kubiak, G.D. and Stulen, R.H., Surf. Sci. 206, 1,833 (1988).Google Scholar
16. Vanderbilt, D. and Louie, S.G., Phys. Rev. B30, 6118 (1984).Google Scholar
17. Pandey, K.C., Phys. Rev. B25, 4338 (1982).Google Scholar
18. Kubiak, G.D. and Kolasinski, K.W., Phys. Rev. B39, 1381 (1989).CrossRefGoogle Scholar
19. Mitsuda, Y., Yamada, T., Chuang, T.J., Seki, H., Chin, R.P., Huang, J.Y., and Shen, Y.R., Surf. Sci. 257, 1633 (1991).CrossRefGoogle Scholar
20. Chin, R.P., Huang, J.Y., Shen, Y.R., Chuang, T.J., Seki, H. and Buck, M., Phys. Rev. 1552 (1992).Google Scholar
21. Shen, Y.R., Nature 337, 519 (1989).CrossRefGoogle Scholar
22. Chin, R.P., Huang, J.Y., Shen, Y.R., Chuang, T.J. and Seki, H., APS Bulletin 37, 331 (1992); J.Y. Huang, R.P. Chin, Y.R. Shen, T. Yamada, T.J. Chuang, H. Seki and Y. Mitsuda (to be published).Google Scholar
23. Yamada, Y., Chuang, T.J., and Scki, H., Molecular Physics, in press.Google Scholar
24. Seah, M.P., Surf. Sci. 32, 703 (1972).Google Scholar