Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:39:08.640Z Has data issue: false hasContentIssue false

Chemical Modification of Carbon Materials with Sulfur Functionalities

Published online by Cambridge University Press:  01 February 2011

Takako Nakamura
Affiliation:
takako-nakamura@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Center for Advanced Carbon Materials, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Tsuguyori Ohana
Affiliation:
t.ohana@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Center for Advanced Carbon Materials, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Get access

Abstract

Photolysis of cyclic disulfides in the presence of carbon materials such as diamond films and single-walled carbon nanotubes led to a surface modification to introduce thioalkylthiol functional groups, confirming by means of Raman, X-ray photoelectron spectroscopy and mass spectrometer measurements. The results on the value of S/C ratio of sulfur-modified diamond films depends on irradiation time by monitoring with XPS. Through thioalkylthiol moieties, an attachment of gold nanoparticles using self-assembly process was performed on carbon materials surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wei, J., Smentkowski, V. S., and Yates, J. T. Jr, Crit. Rev. Surf. Chem. 5, 73 (1995).Google Scholar
2. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., “Science of Fullerene and Carbon Nanotubes”, (Academic Press, 1996).Google Scholar
3. Saito, R., Dresselhaus, M. S., and Dresselhaus, G., “Physical Properties of Carbon Nanotubes”,(Imperial College Press, 1998).Google Scholar
4. Miller, J. B., and Brown, D. W., Langmuir 12, 5809 (1996).Google Scholar
5. Ando, T., NishitaniGamo, M., Rawles, R. E., Yamamoto, K., Kamo, M., and Sato, Y., Diamond Relat. Mater. 5, 1136 (1996).Google Scholar
6. Ikeda, Y., Saito, T., Kusakabe, K., Morooka, S., Maeda, H., Taniguchi, Y., and Fujiwara, Y., Diamond Relat. Mater. 7, 830 (1998).Google Scholar
7. Lin, T., Bajpai, V., Ji, T., and Dai, L. M., Aust. J. Chem. 56, 635 (2003) and references are there in.Google Scholar
8. Philip, P., “Organosulfur Chemistry” (Academic Press, 1995).Google Scholar
9. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J.B., Koos, A.A., Osvath, Z., Kocsonya, A., Biro, L.P., and Kiricsi, I., Chem. Phys. Lett. 360, 429 (2002).Google Scholar
10. Gupta, S., Weiner, B. R., and Morell, G., J. Appl. Phys. 97, 94307 (2005).Google Scholar
11. Nakamura, T., Suzuki, M., Ishihara, M., Ohana, T., Tanaka, A., and Koga, Y., Langmuir 20, 5846 (2004).Google Scholar
12. Nakamura, T., Ishihara, M., Ohana, T., Tanaka, A., and Koga, Y., Chem. Commun. 2004, 1336.Google Scholar
13. Ramakrishnan, V., Thompson, S. D., and McGlynn, S. P., Photochem. Photobiol. 1965, 907.Google Scholar
14. Ali, M. H., and McDermott, M., Tetrahedron Lett. 43, 6271 (2002).Google Scholar
15. Brown, K. R., Walter, D. G., and Natan, M. J., Chem. Mater. 12, 306 (2000).10.1021/cm980065pGoogle Scholar
16. Kondo, T., Honda, K., Tryk, D. A., and Fujishima, A., J. Electrochem. Soc. 152, E18 (2005).Google Scholar
17. Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., J. Mater. Res. 5, 2405 (1990).Google Scholar
18. Celii, F. G., Patterson, P. E., Wang, H.-T., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988).10.1063/1.99575Google Scholar
19. Ali, M. H., and McDermott, M., Tetrahedron Lett. 43, 6271 (2002).10.1016/S0040-4039(02)01220-0Google Scholar
20. Park, K. A., Choi, Y. S., Lee, Y. H., and Kim, C., Phys. Rev. B 68, 5429 (2003).Google Scholar