Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T22:38:08.423Z Has data issue: false hasContentIssue false

The Chemistry of GaN Growth

Published online by Cambridge University Press:  17 March 2011

T.F. Kuech
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Shulin Gu
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Ramchandra Wate
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Ling Zhang
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
Jingxi Sun
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
J.A. Dumesic
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, Madison, WI, 53706
J.M. Redwing
Affiliation:
Pennsylvania State University, Dept. of Materials Science, University Park, PA, 16802.
Get access

Abstract

The development of new chemically based growth techniques has opened the range of possible GaN applications. This paper reviews some of the challenges in the chemically based growth of GaN and related materials. Ammonothermal-based growth, hydride vapor phase epitaxy and metal organic vapor phase epitaxy (MOVPE) are chemically complex systems wherein the underlying mechanisms of growth are not well understood at present. All these systems require substantial experimental and theoretical efforts to determine the nature and kinetics of GaN growth. In the case of metal organic vapor phase epitaxy, the application of computational techniques based on density functional theory have augmented the more conventional experimental approaches to determining the growth chemistry. These chemical reaction schemes, when combined with computational thermal-fluid models of the reactor environment, provide the opportunity to predict growth rates, uniformity and eve ntually materials properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ballman, A.A. and Laudise, R.A., “Hydrothermal Growth,” in The Art and Science of Growing Crystals, ed. Gilman, J.J. (John Wiley & Sons, New York 1963).Google Scholar
2. Porowski, S. and Grzegory, I., Properties of Group III nitrides, 11, (1994) 76.Google Scholar
3. Lo, I.H. and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
4. Peters, D., J. Cryst. Growth 104, 411 (1990).Google Scholar
5. Dwilinski, R., Doradzinski, R., Garczynski, J., Sierzputowski, L., Baranowski, J.M., Kaminska, M., Diamond and Rel. Mater. 7, 1348 (1998).Google Scholar
6. Dwilinski, R., Wysmolek, A., Baranowski, J., Kaminska, M., Doradzinski, R., Garczynski, J., Sierzputowski, L., and Jacobs, H., Acta Phys. Polon. A 88, 833 (1995).Google Scholar
7. Purdy, A.P., Chem. Mater. 11 1648 (1999).Google Scholar
8. Jegier, J.A., McKernan, S., Purdy, A.P., and Gladfelter, W.L., Chem. Mater. 12, 1003 (2000).Google Scholar
9. Byrappa, K., “Hydrothermal Growth of Crystals,” in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.2, Chapter 9.Google Scholar
10. Mutaftschiev, B., “Nucleation Theory”, in Handbook of Crystal Growth, ed. Hurle, D.T.J. (North Holland, Amsterdam, 1994) Vol.1, Chapter 4.Google Scholar
11. Keller, S., Keller, B. P., Wu, Y. F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett., 68(11) 1525 (1996).Google Scholar
12. Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R., and Melngailis, I., Mater. Res. Soc. Symp. Proc., 378, 479 (1995).Google Scholar
13. Akasaki, I., and Amano, H., J. Crystal Growth, 163, 86 (1996).Google Scholar
14. Monlar, R. J., Gotz, W., Romano, L. T., and Johnson, J. M., J. Crystal Growth, 178, 147 (1997).Google Scholar
15. Gu, Shulin, Zhang, Rong, Sun, Jingxi, Zhang, Ling, and Kuech, T. F., Appl. Phys. Lett. 76 (2000) 3454.Google Scholar
16. Hashimoto, T., Terakoshi, Y., Ishida, M., Yuri, M., Imafuli, O., Sugino, T., Yoshikawa, A., Itoh, K., J. Crystal Growth 189–190 (1998) 254.Google Scholar
17. Fuke, S., Teshigawara, H., Kuwahara, K., Takano, Y., Ito, T., Yanagihara, M., Ohtauka, K., J. Appl. Phys. 83 (1998) 764.Google Scholar
18. Nakamura, S., Jap. J. Appl. Phy. Part 2 30, (1991) L1705.Google Scholar
19.For an example of typical growth conditions see, Zhang, R. and Kuech, T.F., Appl. Phys. Lett. 72, 1611 (1997).Google Scholar
20. Safvi, S.A., Redwing, J.M., Tischler, M.A., Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1789.Google Scholar
21. Coates, G.E., J. Chem. Soc. part III (1951) 1943.Google Scholar
22. Zaouk, A., Salvetat, E., Sakaya, J., Maury, F., and Constant, G., J. Crystal Growth 55 (1981) 135.Google Scholar
23. Mazzarese, D., Tripathi, A., Conner, W. C., Jones, K. A., Calderon, L., and Eckart, W., J. Electron. Mater. 18 (1989) 369.Google Scholar
24. Sywe, B. S., Schlup, J. R., and Edgar, J. H., Chem. Mater. 3 (1991) 737.Google Scholar
25. Almond, M. J., Jenkins, C. E., Rice, D. A., and Hagen, K., J. Organomet. Chem. 439 (1992) 251.Google Scholar
26. Thon, A. and Kuech, T.F., Appl. Phys. Lett. 69 (1996) 56.Google Scholar
27. Saito, H., Makimoto, T., and Kobayashi, N., J. Crystal Growth 195 (1998) 416.Google Scholar
28. Ougazzaden, A., Rao, E., Sermage, B., Leprince, L., and Gauneau, M., Jap. J. Appl. Phys. 38 (1999) 1019.Google Scholar
29. Thon, A., Saulys, D., Safvi, S.A., Gaines, D.F., and Kuech, T.F., J. Electrochem. Soc. 144 (1997) 1127.Google Scholar
30. Wate, R. M., Dumesic, J. A., and Kuech, T. F., J. Crystal Growth, 221 (2001) 751 Google Scholar
31. Sun, J., Redwing, J.M., Kuech, T.F., Physica Status Solidi A. 176 (1999) 693.Google Scholar
32. Sun, J., Redwing, J.M., Kuech, T.F., Wide-Bandgap Semiconductors for High-Power, High-Frequency and High-Temperature Applications, (Symposium. Mater. Res. Soc, Warrendale, PA, 1999) 463.Google Scholar