Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-04T01:55:02.527Z Has data issue: false hasContentIssue false

Colloidal Dynamics from Forced Rayleigh Scattering

Published online by Cambridge University Press:  25 February 2011

M.S. Wolfe
Affiliation:
E.I. Dupont de Nemours & Co., Inc., Wilmington, Delaware 19880-0356
Get access

Abstract

Colloidal suspensions are remarkable analogues of molecular fluids. In particular, at high volume fraction (Φv) they share two characteristic features with super-cooled molecular liquids: the appearance of two distinct modes of translational motion (fast and slow diffusive modes), and a critical retardation of the latter as Φv approaches random close packing (a colloidal “glass transition”). These phenomena have been studied extensively by photon correlation spectroscopy (PCS) [1-4] and are the subject of many theoretical analyses [5-12]. This paper concerns the use of forced Rayleigh scattering (FRS) to address questions not resolved by existing data or theory. We report: 1) properties of a hydrophobic silica colloid bearing photoactive azo-dye groups suitable for FRS studies, and 2) preliminary results from FRS measurements which reveal some unanticipated features regarding the transition from short-time to long-time self-diffusion at small k.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1)Kops-Werkhoven, M.M., & Fijnaut, H.M., J. Chem. Phys.,77, 2242 and 5913 (1982).Google Scholar
2)Pusey, P.N. & Megen, W. van, J. de Physique, 44, 285, (1983).Google Scholar
3)Megen, W. van & Underwood, S.M., J. Chem. Phys.,88, 7841 (1988); 21, 552 (1989).Google Scholar
4)Megen, W. van & Pusey, P.N., Phys. Rev. A, 43, 5429, (1991).Google Scholar
5)Batchelor, G.K., J. Fluid Mech., 74, 1, (1976).CrossRefGoogle Scholar
6)Hess, W. & Klein, R., Physica, 105A, 552 (1981).Google Scholar
7)Beenaker, C.W.J. & Mazur, P., Physica, 126A, 349 (1984).CrossRefGoogle Scholar
8)Ackerson, B.J., Pusey, P.N., & Tough, R.J.A., J. Chem. Phys., 76 (1982).Google Scholar
9)Pusey, P.N. & Tough, R.J.A., Far. Soc. Disc., 76, 123, (1983).Google Scholar
10)Medina-Noyola, M., Phys. Rev. Let., 60, 2705 (1988).Google Scholar
11)Jones, D.M., Muthukumar, M., & Cohen, S.M., J. Chem. Phys.,90, 7542, (1989).Google Scholar
12)Götze, W. & Sörgren, L., Phys. Rev. A, 41, 5442, (1991).CrossRefGoogle Scholar
13)Pusey, P.N., Fijnaut, H.M., & Vrij, A., J. Chem. Phys., 27, 4270, (1982).Google Scholar
14)Hervet, H., Leger, L., & Rondelez, F., Phys. Rev. Let., 42, 1681, (1978).Google Scholar
15)Mazur, S., Raty, R.G., & Manring, L.E., in preparation.Google Scholar
16)Ross, D.L. & Blanc, J., in “Photochromism”, Brown, G.H., Ed., Vol. III, Chap. V, Wiley-Interscience, N.Y., 1971.Google Scholar