Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-09T11:10:45.699Z Has data issue: false hasContentIssue false

Columnar Epitaxy of Hexagonal and Orthorhombic Silicides on Si(111)

Published online by Cambridge University Press:  28 February 2011

R.W. Fathauer
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109
C.W. Nieh
Affiliation:
Keck Laboratory of Engineering, California Institute of Technology, Pasadena, CA 91125 (Present address: Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265)
Q.F. Xiao
Affiliation:
Physics Department and Institute for Particle-Solid Interactions, State University of New York at Albany, 1400 Washington Ave., Albany, NY 12222
Shin Hashimoto
Affiliation:
Physics Department and Institute for Particle-Solid Interactions, State University of New York at Albany, 1400 Washington Ave., Albany, NY 12222
Get access

Abstract

Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultra-high vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840°C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)//Si(111), with PtSi[001]//Si<110>.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kosonocky, Walter F., Shallcross, Frank V., Villani, Thomas S., and Groppe, Joseph V., IEEE Trans. Electron Devices ED–32, 1564 (1985).10.1109/T-ED.1985.22165Google Scholar
2. Murarka, S.P., Silicides for VLSI Applications, (Academic, Orlando, 1983), pp. 15 and 30.Google Scholar
3. Yokota, Y., Matz, R., and Ho, P.S., in Mat. Res, Soc. Svmn. Proc.. Vol. 25, edited by Baglin, J.E.E., Campbell, D.R., and Chu, W.K. (North-Holland, New York, 1984), pp. 435440.Google Scholar
4. Ishiwara, Hiroshi, Hikosaka, Kohki, and Furukawa, Seijiro, J. Appl. Phys. 50, 5302 (1979).10.1063/1.326628Google Scholar
5. Bost, M.C. and Mahan, John E., J. Appl. Phys. 3, 839 (1988).10.1063/1.340078Google Scholar
6. Fathauer, R.W., Grunthaner, P.J., Lin, T.L., Chang, K.T., Mazur, J.H., and Jamieson, D.N., J. Vac. Sci. Technol. B 6, 708 (1988).10.1116/1.584352Google Scholar
7. White, Alice E., Short, K.T., and Eaglesham, S.J., Appl. Phys. Lett. 56, 1260 (1990).10.1063/1.103334Google Scholar
8. Fathauer, R.W., Nieh, C.W., Xiao, Q.F., and Hashimoto, Shin, Appl. Phys. Lett. 55, 247 (1989).10.1063/1.102383Google Scholar
9. Henz, J., Ospelt, M., and Kanel, H. von, Solid State Communications, 63, 445 (1987).10.1016/0038-1098(87)90268-7Google Scholar
10. Grunthaner, P.J., Grunthaner, F.J., Fathauer, R.W., Lin, T.L., Schowengerdt, F.D., Pate, B., and Mazur, J.H., Thin Solid Films 18, 197 (1989).10.1016/0040-6090(89)90445-8Google Scholar
11. Wetzel, P., Pirri, C., Peruchetti, J.C., Bolmont, D., and Gewinner, G., Phys. Rev. B 35, 5880 (1987).10.1103/PhysRevB.35.5880Google Scholar
12. Hansen, Max, Constitution of Binary Alloys, (McGraw-Hill, New York, 1958), pp. 504, 560, and 1140.Google Scholar
13. D'Avitaya, F. Arnaud, Delage, S., Rosencher, E., and Derrien, J., J. Vac. Sci. Technol. B 2, 770 (1985).10.1116/1.583140Google Scholar
14. Lin, T.L., Grunthaner, P.J., Schowengerdt, F.D., Fathauer, R.W., Mazur, J.H., Chang, K.T., Hashimoto, S., and Xiao, Q., in Mat. Res. Soc. Symp. Proc.. Vol 116, edited by Chio, H.K., Hull, R., Ishiwara, H., and Nemanich, R.J. (Materials Research Society, Pittsburgh, 1988), pp. 431438.Google Scholar