Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T06:18:04.858Z Has data issue: false hasContentIssue false

Computer Simulation of Charging and Erasing Transients of a Ge/Si Hetero-nanocrystal-based Flash Memory

Published online by Cambridge University Press:  01 February 2011

Dengtao Zhao
Affiliation:
Quantum Structures Laboratory, Department of Electrical Engineering, University of California, Riverside, CA 92521
Yan Zhu
Affiliation:
Quantum Structures Laboratory, Department of Electrical Engineering, University of California, Riverside, CA 92521
Ruigang Li
Affiliation:
Quantum Structures Laboratory, Department of Electrical Engineering, University of California, Riverside, CA 92521
Jianlin Liu
Affiliation:
Quantum Structures Laboratory, Department of Electrical Engineering, University of California, Riverside, CA 92521
Get access

Abstract

The transient process of the programming and erasing is very important for a nanocrystal-floating-gate flash memory. In this work, a computer simulation was carried out to investigate the charging, retention and erasing processes of our proposed Ge/Si hetero-nanocrystal floating gate flash memory. The transient gate current, the transient drain current and the average charge in one dot were simulated respectively. Evident hysteresis features can be observed in the transient processes in a voltage-sweeping measurement mode. While measuring the transient process in a constant voltage mode, the time decay of transient current and charge are weakened if Ge is used on the Si dot, indicating a longer retention time for Ge/Si-floating-gate flash memory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., and Buchanan, D., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. Nakajima, A., Futatsugi, T., Kosemura, K., Fukano, , and Yokoyama, N., Appl. Phys. Lett. 70, 1742 (1997).Google Scholar
3. Shi, Y., Saito, K., Ishikuro, H., and Hiramoto, T., J. Appl. Phys. 84, 2358 (1998).Google Scholar
4. Shi, Y., Saito, K., Ishikuro, H., and Hiramoto, T., Jpn. J. Appl. Phys. 38, 2453 (1999).Google Scholar
5. Saitoh, M., Nagata, E., and Hiramoto, T., Appl. Phys. Lett. 82, 1787 (2003).Google Scholar
6. She, M., and King, T. J., IEEE Trans. Electron Devices 50, 1934 (2003).Google Scholar
7. Yang, H. G., Shi, Y., Pu, L., Gu, S. L., Shen, B., Han, P., Zhang, R., and Zhang, Y. D., Microelectronics Journal 34, 71 (2003).Google Scholar
8. Han, K., Kim, I., and Shin, H., IEEE Electron Device Lett. 21, 313 (2000).Google Scholar
9. Park, N. M., Jeon, S. H., Yang, H. D., Hwang, H., and Park, S. J., Appl. Phys. Lett. 83, 1014 (2003).Google Scholar
10. Wahl, J. A., Silva, H., Gokirmak, A., Welser, J. J., and Tiwari, S., IEDM Tech. Dig. 1999, 375.Google Scholar
11. Ando, Y., and Itoh, T., J. Appl. Phys. 61, 1497 (1987).Google Scholar
12. Register, L. F., Rosenbaum, E., and Yang, K., Appl. Phys. Lett. 74, 457 (1999).Google Scholar
13. Paul, S. F. P., and Fouckhardt, H., Phys. Lett. A 286, 199 (2001).Google Scholar