Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T19:42:26.589Z Has data issue: false hasContentIssue false

Concentration and Stress Evolution During Electromigration in Passivated Al(0.25 at. % Cu) Conductor Lines

Published online by Cambridge University Press:  17 March 2011

H.-K. Kao
Affiliation:
Lehigh University, Bethlehem, PA 18015, gsc3@lehigh.edu
G. S. Cargill III
Affiliation:
Lehigh University, Bethlehem, PA 18015, gsc3@lehigh.edu
C.-K. Hu
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We have used x-ray microbeam fluorescence and diffraction for in-situ measurements of electromigration-induced Cu diffusion and stress evolution in passivated, polycrystalline 10[.proportional]m-wide, 200[.proportional]m-long Al(0.25 at.% Cu) conductor lines. Cu migration is in the direction of the electron flow and is determined by the direction and magnitude of the current and by the temperature during electromigration. The effective charge and diffusivity of Cu in Al(Cu) have been obtained from analysis of the Cu concentration profiles. The evolution of electromigration-induced strains normal to the sample surface has been monitored by x-ray microbeam diffraction. A linear strain profile developed after about 9 hrs of electromigration with 1.5[.dotmath]105 A/cm2 at 300°C, corresponding to 3MPa/[.proportional]m equi-biaxial stress. From the Cu profile measured at the same time, the critical Cu concentration for significantly slowing down Al grain boundary diffusion is estimated to be ∼0.15 at. %. These data also confirm that downstream Cu transport is accompanied by a counter flow of Al in the upstream direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ames, I., d'Heurle, F., and Horstmann, R., IBM J. Res. Dev. 14, 461 (1970).10.1147/rd.144.0461Google Scholar
[2] d'Heurle, F. M., Proc. IEEE 59, 1409 (1971).10.1109/PROC.1971.8447Google Scholar
[3] d'Heurle, F. M., Ainslie, N. G., Gangulee, A., and Shine, M. C., J. Vac. Sci. Technol. 9, 289 (1972).10.1116/1.1316583Google Scholar
[4] Rosenberg, R., J. Vac. Sci. Technol. 9, 263 (1972).10.1116/1.1316576Google Scholar
[5] Ho, P. S. and Howard, J. K., Appl. Phys. Lett. 27, 261 (1975).10.1063/1.88458Google Scholar
[6] Blech, I. A., J. Appl. Phys. 48, 472 (1977).Google Scholar
[7] Hu, C.-K., Ho, P. S., and Small, M. B., J. Appl. Phys. 72, 291 (1992).10.1063/1.352335Google Scholar
[8] Hu, C.-K., Small, M. B., and Ho, P. S., J. Appl. Phys. 74, 969 (1993).10.1063/1.354839Google Scholar
[9] Korhonen, M. A., Liu, T., Brown, D. D., and Li, C.Y., Mat. Res. Soc. Symp. Proc. 391, 411 (1995).10.1557/PROC-391-411Google Scholar
[10] Lloyd, J. R. and Clement, J. J., Appl. Phys. Lett. 69, 2486 (1996).10.1063/1.117506Google Scholar
[11] Lloyd, J. R., Semicond. Sci. Technol. 12, 1177 (1997).10.1088/0268-1242/12/10/002Google Scholar
[12] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. Symp. Proc. 427, 35 (1996).10.1557/PROC-427-35Google Scholar
[13] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. Symp. Proc. 473, 273 (1997).10.1557/PROC-473-273Google Scholar
[14] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., and Hu, C.-K., Appl. Phys. Lett. 72, 1296 (1998).10.1063/1.120604Google Scholar
[15] Kao, H.-K., Cargill, G. S. III, Hwang, K. J., Ho, A. C., Wang, P.-C., and Hu, C.-K., Mat. Res. Soc. Symp. Proc. 563, 163 (1999).10.1557/PROC-563-163Google Scholar
[16] Note that the Cu concentration values given in ref. 15 are too large by a factor of two, and that the current and current density should be 15mA and 3[.dotmath]105A/cm2 instead of the larger values 25mA and 5[.dotmath]105A/cm2 given in ref. 15.Google Scholar
[17] Kao, H.-K., Cargill, G. S. III and Hu, C.-K., to be published.Google Scholar
[18] Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York, 1958, p. 353.Google Scholar
[19] CRC Handbook of Materials Science, Lynch, C. T., Ed., CRC Press, Cleveland, 1974, p. 341.Google Scholar
[20] Shaw, T. M., Hu, C.-K., Lee, K. Y., and Rosenberg, R., Appl. Phys. Lett. 67, 2296 (1995).10.1063/1.115131Google Scholar
[21] Shaw, T. M., Hu, C.-K., Lee, K. Y., and Rosenberg, R., Mat. Res. Soc. Symp. Proc. 428, 187 (1996).10.1557/PROC-428-187Google Scholar