Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T00:24:35.432Z Has data issue: false hasContentIssue false

Conducting polymer fibers of polyaniline doped with camphorsulfonic acid

Published online by Cambridge University Press:  01 February 2011

Saima Naz Khan
Affiliation:
ak1175.2@gmail.com, Ohio University, Department of Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Aurangzeb Khan
Affiliation:
khan@phy.ohiou.edu, Ohio University, Physics and Astronomy, 251B Clippinger labs,, Athens, OH, 45701, United States
Martin E. Kordesch
Affiliation:
kordesch@phy.ohiou.edu, Ohio University, Physics and Astronomy, 251B Clippinger labs,, Athens, OH, 45701, United States
Get access

Abstract

Electrically conducting fibers of polyaniline doped with Camphorsulfonic acid PAn.HCSA in the Polyethylene Oxide (PEO) matrix were prepared using the non-mechanical electrospinning technique. The morphology of the fibers was studied using the scanning electron microscope (SEM) and Transmission electron microscope (TEM), showing a uniform thickness along the fiber length. The fibers had a diameter ranging from 800nm to 2μm. The electrical conductivity of the non-woven fibrous mat and the cast film was measured using the four-point probe method, for different concentrations of Pan.HCSA in the blend. Some possible factors affecting the electrical conductivity of the fibers/films were discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Formhals, A., U.S Patent No. 1 975 504 (1934).Google Scholar
2. Reneker, D.H. and Chun, I., Nanotechnology 7, 216 (1996).Google Scholar
3. Deitzel, J. M., Kleinmeyer, J., Harris, D., Tan, N. C. B., Polymer 42, 261–72 (2001).Google Scholar
4. Doshi, J., Reneker, D.H., J. Electrost. 35, 151 (1995).Google Scholar
5. Gibson, P. W., Schreuder-Gibson, H.L., Riven, D., Aiche Journal 45, 190 (1999).Google Scholar
6. Ko, F. K., Laurencin, C. T., Borden, M. D., and Reneker, D. H., Proceedings, Annual Meeting, Biomaterials Research Society, San Diego, (1998).Google Scholar
7. Norris, I. D., Shaker, M. M., Ko, F. K., MacDiarmid, A. G., Synthetic Metals 114, 109 (2000).Google Scholar
8. Chun, I., Reneker, D. H., Fong, H., Fang, X., Deitzel, J., Tan, N. B., Kearns, K., J. Adv. Mater. 31, 36 (1996).Google Scholar
9. Pinto, N. J., Shah, P.D., Kahol, P. K., B. J. McCormick 53, 16 (1995).Google Scholar
10. Huang, J., Virji, S., Weiller, B. H., Kaner, R. B., Chem. Eur. J. 10, 13141319 (2004).Google Scholar
11. Sixou, B. et al., Phys. Rev. B, 56, 4604 (1997).Google Scholar
12. Reneker, D. H. and Chun, I., Nanotechnology 7, 216 (1996).Google Scholar
13. Chun, I., Reneker, D. H., Fong, H., Fang, X., Deitzel, J., Tan, N. B., Kearns, K., J. Adv. Mater. 31, 36(1996).Google Scholar
14. Roussel, R. C. Y. King. F., Synthetic Metals, 153, 337340 (2005).Google Scholar
15. Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., Ramkumar, S. S., Jour. Appl. Poly. Sci, 96, 557569 (2005).Google Scholar
16. Pinto, N. J. et al. Applied Physics Letters, 83, 20 (2003).Google Scholar
17. Derschl, R., Steinhart, M., Boudriot, U., Greiner, A. and Wendorff, J. H., Polym. Adv. Technol. 16, 276282 (2005).Google Scholar
18. Xia, Y., Wiesinger, J. M. and MacDiarmid, A. G., Chem. Mater. 7. 443–445 (1995).Google Scholar