Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-21T15:28:28.639Z Has data issue: false hasContentIssue false

Constant-Temperature Molecular-Dynamics Simulation of the 2D Melting Transition of Rb and K

Published online by Cambridge University Press:  01 January 1992

J. D. Fan
Affiliation:
Department of Physics, Southern University and A & M College, Baton Rouge, LA 70813
Zhi-Xiong Cai
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

The energy histogram method, introduced by Ferrenberg and Swendsen [Phys. Rev. Lett., 61, 2635, (1988) and 63, 1195, (1989)], was applied for the first time to the constant temperature molecular dynamics (MD) simulation of a two-dimensional (2D) system with incommensurate structures. We performed MD simulations for the stage-2 graphite intercalation compounds (GIC's) with Rb or K being the intercalants (Rb-GIC's and K- GIC's). The temperature dependence of the specific heat, Cv, is calculated for various sizes up to 864 atoms. The melting temperature was found to be 158 K for Rb-GIC's and 119 K for K-GIC's, respectively, which are in agreement with the experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ferrenberg, Allen M. and Swendsen, Robert H., Phys. Rev. Lett., 61, 2635 (1988)Google Scholar
[2] Ferrenberg, Allen M. and Swendsen, Robert H., Phys. Rev. Lett., 63, 1195 (1989)Google Scholar
[3] Strandburg, Katherine J., “Two-Dimensional Melting”. Rev. Mod. Phys., 60, 161 (1988)Google Scholar
[4] Moss, S. C. and Moret, R., “Structural Properties and Phase Transitions.” Graphite Intercalation Compounds I: Structure and Dynamics, Zabel, H. and Solin, S. A., eds. Springer Series in Materials Science 14, Springer-Verlag (1990)Google Scholar
[5] Fan, J. D., Ph. D Thesis, University of Houston, (1989)Google Scholar
[6] Vigliante, A., Fan, J. D., Reiter, G. and Moss, S. C., Phys. Rev. B, 43, 6739 (1991)Google Scholar
[7] Fan, J. D., Reiter, G. and Moss, S. C.., Phys. Rev. Lett. 64, 188 (1990)Google Scholar
[8] Fan, J. D., Karim, O. A., Reiter, G. and Moss, S. C., Phys. Rev. B, 39, 6111 (1989)Google Scholar
[9] Moss, S. C., Reiter, G., Robertson, J. L., Thompson, C., Fan, J. D. and Ohshima, K., Phys. Rev. Lett. 57, 3191 (1986)Google Scholar
[10] Kan, X. B., Robertson, J. L., Moss, S.C., Ohshima, K. and Sparks, C. J., Phys. Rev. B39, 10627 (1989)Google Scholar
[11] Visscher, P. B. and Falicov, L. M., Phys. Rev. B, 3, 2541 (1971)Google Scholar
[12] Plischke, M., Can. J. Phys., 59, 802 (1981)Google Scholar
[13] Hower, W. G., Land, A. J. C., and Morn, B., Phys. Rev. Lett. 48, 1818 (1982)Google Scholar
[14] Evans, D. J., J. Chem. Phys. 78, 3297 (1983)Google Scholar
[15] Seong, H., Mahanti, S. D., Sen, S. and Cagin, T., Phys. Rev. B, 46, 8748 (1992)Google Scholar
[16] Reiter, G. and Moss, S. C., Phys. Rev. B, 33, 7209 (1986)Google Scholar