Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:07:57.075Z Has data issue: false hasContentIssue false

Continuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages of Plasmodium falciparum malaria parasite

Published online by Cambridge University Press:  01 February 2011

John P. Mills
Affiliation:
Department of Materials Science and Engineering, Singapore 117576. Republic of Singapore.
Lan Qie
Affiliation:
Division of Bioengineering, Singapore 117576. Republic of Singapore.
Ming Dao
Affiliation:
Department of Materials Science and Engineering, Singapore 117576. Republic of Singapore.
Kevin S. W. Tan
Affiliation:
Department of Microbiology, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117576. Republic of Singapore.
Chwee Teck Lim
Affiliation:
Division of Bioengineering, Singapore 117576. Republic of Singapore.
Subra Suresh
Affiliation:
Department of Materials Science and Engineering, Singapore 117576. Republic of Singapore.
Get access

Abstract

Prior work involving either aspiration of infected cells into micropipette under suction pressure or deformation in laminar shear flow revealed that the malaria parasite Plasmodium (P.) falciparum could result in significant stiffening of infected human red blood cells (RBCs). In this paper, we present optical tweezers studies of progressive changes to nonlinear mechanical response of infected RBCs at different developmental stages of P. falciparum. From early ring stage to late trophozoite and schizont stages, up to an order of magnitude increase in shear modulus was found under controlled mechanical loading by combining experiments with three-dimensional computational simulations. These results provide novel approaches to study changes in mechanical deformability in the advanced stages of parasite development in the erythrocyte, and suggest a significantly greater stiffening of the red blood cell due to P. falciparum invasion than that considered from previous studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, L. H., Baruch, D. I., Marsh, K. and Doumbo, O. K., Nature 415, 673679 (2002).Google Scholar
2. Cooke, B. M., Mohandas, N. and Coppell, R. L., Adv. Parasitology 50, 186 (2001).Google Scholar
3. Glenister, F. K., Coppel, R. L., Cowman, A. F., Mohandas, N. and Cooke, B. M., Blood 99, 10601063 (2002).Google Scholar
4. Cranston, H. A. et al., Science 223, 400403 (1984).Google Scholar
5. Nash, G. B., O'Brien, E., Gordon-Smith, E. C. and Dormandy, J. A., Blood 74, 855861 (1989).Google Scholar
6. Paulitschke, M. and Nash, G. B., J. Lab. Clin. Med. 122, 581589 (1993).Google Scholar
7. Suwanarusk, R., Cooke, B. M, Dondorp, A. M., Silamut, K., Sattabongkot, J., White, N. J. and Udomsangpetch, R., J. Infectious Diseases 189, 190194 (2004).Google Scholar
8. Mills, J. P., Qie, L., Dao, M., Lim, C. T. and Suresh, S., Mech. Chem. Biosystemsb 1, 169180 (2004).Google Scholar
9. Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M. and Seufferlein, T., Acta Biomaterialia, 1, 1530 (2005).Google Scholar
10. Svoboda, K. and Block, S. M., Annu. Rev. Bioph. Biom. 23, 247285 (1994).Google Scholar
11. Hénon, S., Lenormand, G., Richert, A. and Gallet, F., Biophys. J. 76, 11451151 (1999).Google Scholar
12. Sleep, J., Wilson, D., Simmons, R. and Gratzer, W., Biophys. J. 77, 30853095 (1999).Google Scholar
13. Dao, M., Lim, C. T. and Suresh, S., J. Mech. Phys. Solids 51, 22592280 (2003). See erratum, in press. Google Scholar
14. Li, J., Dao, M., Lim, C.T. and Suresh, S., MIT Report LEXCOM-1–2004, MIT (2004).Google Scholar