Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T00:41:35.170Z Has data issue: false hasContentIssue false

Controlled Passivation and Luminescence Blue Shifts of Isolated Silicon Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Julie S. Biteen
Affiliation:
California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 2
Anna L. Tchebotareva
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Albert Polman
Affiliation:
California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 2 FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Nathan S. Lewis
Affiliation:
California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 2
Harry A. Atwater
Affiliation:
California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 2
Get access

Abstract

We have performed a comparative study of oxide- and nonoxide-passivated silicon nanocrystals to probe the role of the silicon/oxygen interface in low coverage, non-interacting silicon nanocrystal systems. Ensembles of Si nanocrystals characterized by a narrow distribution and diameters of 2–5 nm were synthesized by ion implantation into SiO2 films followed by a high-temperature anneal in Ar. The nanocrystals were removed from the SiO2 film matrix and deposited on Si substrates using a chemical etch in HF, leaving a hydrogen-terminated surface. A natural oxide layer grows on these surfaces in air. We characterized the morphology of the samples with atomic force microscopy (AFM) and the spectroscopic properties with photoluminescence (PL) and X-Ray photoelectron spectroscopy. We found that the PL energy of Si nanocrystals can be shifted by particle size reduction and hydrogen or oxygen termination. Further, PL peak energy shifts upon etching and oxidation were consistent with the model of Wolkin et al. that proposes that for very small radii, a silicon-oxygen double bond will produce deep interface states which red shift the luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
3. Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
4. Schuppler, S. et al., Phys. Rev. B 52, 4910 (1995).Google Scholar
5. Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T., and Mimura, H., Phys. Rev. B 48, 2827 (1993).Google Scholar
6. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
7. Puzder, A., Williamson, A.J., Grossman, J.C., and Galli, G., J. Chem. Phys. 117, 6721 (2002).Google Scholar
8. Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzo, G., and Priolo, F., Nature 408, 440 (2000).Google Scholar
9. Nayfeh, M.H., Rao, S., Barry, N., Therrien, J., Belomoin, G., Smith, A. and Chaieb, S., Appl. Phys. Lett. 80, 121 (2002).Google Scholar
10. Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping Range of Ions in Solids (Pergamon Press, New York, 1983).Google Scholar
11. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A., Appl. Phys. Lett. 68, 2511 (1996).Google Scholar
12. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A., Appl. Phys. Lett. 69, 2033 (1996).Google Scholar
13. Brongersma, M.L., Polman, A., Min, K.S., Boer, E., Tambo, T., and Atwater, H.A., Appl. Phys. Lett. 72, 2577 (1998).Google Scholar
14. Bansal, A., Li, X., Lauermann, I., Lewis, N.S., Yi, S.I., and Weinberg, W.H., J. Am. Chem. Soc. 118, 7225 (1996).Google Scholar
15. Bansal, A. and Lewis, N.S., J. Phys. Chem. B 102, 1067 (1998).Google Scholar
16. Royea, W.J., Juang, A., and Lewis, N.S., Appl. Phys. Lett. 77, 1988 (2000).Google Scholar