Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:41:48.969Z Has data issue: false hasContentIssue false

Controlling Defects in Double-Layer Cuprates by Chemical Modifications

Published online by Cambridge University Press:  15 February 2011

P. A Salvador
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
K. B. Greenwood
Affiliation:
Department of Chemistry, Northwestern University, EvanstonIL 60208
K. Otzschi
Affiliation:
Department of Chemistry, Northwestern University, EvanstonIL 60208
J. W Koenitzer
Affiliation:
Department of Chemistry, Northwestern University, EvanstonIL 60208
B. M. Dabrowski
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
K. R. Poeppelmeier
Affiliation:
Department of Chemistry, Northwestern University, EvanstonIL 60208
T. O. Mason*
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
*
Author to whom correspondence should be addressed.
Get access

Abstract

In-situ high temperature electrical conductivity and thermopower have been measured simultaneously on a number of ordered perovskite-like oxides containing double CUO4/2 sheets. Equilibrium measurements have been conducted as a function of oxygen partial pressure, temperature and chemical substitution in order to understand the relationships between the chemical architecture and the transport and defect properties. Data for LaBa2Cu2NbO8 and LaCa2Cu2GaO7 are presented and compared with those of known triple perovskite superconductors, Y1−xCaxSr2Cu2GaO7 and YBa2Cu3O7−δ, and several quadruple perovskites, Ln′Ln″Ba2Cu2M2O11 (Ln = Lanthanide, Y; M = Sn, Ti). These materials belong to a general family of superconductors which are constructed from similar ‘active’ layers (double perovskite blocks of square-pyramidal copper-oxygen sheets), and interleaved with fixed valence cations in perovskite-like ‘conditioning’ layers. Similarities in the transport properties of the non-superconducting and superconducting materials at elevated temperatures are illustrated, and the amount and types of defects, including carrier concentrations, are correlated with the internal chemistry and inner architecture of each material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salvador, P. A., Shen, L., Mason, T. O., Greenwood, K. B. and Poeppelmeier, K. R., J. Solid State Chem. 119, p. 80 (1995).Google Scholar
2. Greenwood, K. B., Sarjeant, G. M., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Dabrowski, B., Rogacki, K. and Chen, Z., Chem. Mater. 7, p. 1355 (1995).Google Scholar
3. Otzschi, K. D., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Zhang, H. and Marks, L. D., J. Am. Chem. Soc. 118, p. 8951 (1996).Google Scholar
4. Salvador, P. A., Mason, T. O., Otzschi, K., Greenwood, K. B., Poeppelmeier, K. R. and Dabrowski, B., J. Am. Chem. Soc. (Submitted-1996).Google Scholar
5. Wu, M. K., Ashbum, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, p. 908 (1987).Google Scholar
6. Beno, M. A., Soderholm, L., Capone, I. D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U. and Zhang, K., Appl. Phys Lett. 51, p. 57 (1987).Google Scholar
7. Vaughey, J. T., Thiel, J. P., Hasty, E. F, Groenke, D. A, Stern, C.L., Poeppelmeier, K. R., Dabrowski, B, Hinks, D. G. and Mitchell, A. W., Chem. Mater. 3, p. 935 (1991).Google Scholar
8. Koenitzer, J. W., Greenwood, K. B., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O. and Dabrowski, B., (Manuscript In Preparation)Google Scholar
9. Murayama, N., Sudo, E., Kani, K., Tsuzuki, A., Kawakami, S, Awano, M. and Torii, Y., Jpn. J. Appl. Phys. 27, p. L1623 (1988).Google Scholar
10. Greaves, C. and Slater, P. R., Physica C 161, p. 245 (1989).Google Scholar
11. Anderson, M. T., Poeppelmeier, K. R., Zhang, J. P., Fan, H.-J. and Marks, L. D., Chem. Mater. 4, p. 1305 (1992).Google Scholar
12. Gormezano, A. and Weiler, M. T., J. Mater. Chem. 3, p. 771 (1993).Google Scholar
13. Su, M.-Y., Elsbemd, C. E. and Mason, T. O., J. Am. Ceram. Soc. 73, p. 415 (1990).Google Scholar
14. Su, M.-Y., Elsbernd, C. E. and Mason, T. O., Physica C 160, p. 114 (1989).Google Scholar
15. Tomlins, G. W., Jeon, N.-L., Mason, T. O., Groenke, D. A., Vaughey, J. T. and Poeppelmeier, K. R., J. Solid State Chem. 109, p. 338 (1994).Google Scholar
16. Trestman-Matts, A., Dorris, S. E. and Mason, T. O., J. Am. Ceram. Soc. 66, p. 589 (1983).Google Scholar
17. Jonker, G. H., Philips Res. Repts 23, p. 131 (1968).Google Scholar
18. Su, M.-Y., Dorris, S. E. and Mason, T. O., J. Solid State Chem. 75, p. 381 (1988).Google Scholar
19. Shen, L., Salvador, P. A. and Mason, T. O., J. Am. Ceram. Soc. 77, p. 81 (1994).Google Scholar
20. Shen, L., Salvador, P. A. and Mason, T. O., J. Phys. Chem. Solids 57, p. 1311 (1996).Google Scholar
21. Fuertes, A., Obradors, X., Navarro, J. M., Gómez-Romero, P., Casañ-Pastor, N., Pérez, F., Fontcuberta, J., Miravitlles, C., Rodríguez-Carvajal, J. and Martínez, B., Physica C 170, p. 153 (1991).Google Scholar