Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-15T01:38:53.562Z Has data issue: false hasContentIssue false

Correlation of Dislocation Loop Formation and Time Dependent Diffusion of Implanted P-type Dopants in Gallium Arsenide

Published online by Cambridge University Press:  26 February 2011

H. G. Robinson
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
M. D. Deal
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
D. A. Stevenson
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
K. S. Jones
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Recent experimental results indicate that diffusion of implanted p-type dopants in GaAs is time dependent under certain conditions. For Mg implanted at a dose of 1 × 1014 cm−2, the diffusion is constant for approximately an hour, then decreases by an order of magnitude or more. Be implanted at 1 × 1013 and 1 ×1014 cm−2 exhibits similar behavior, but with a shorter time before the diffusivity decreases. The diffusivity in 1 × 1013 Mg cm−2 implants, in contrast, remains constant for up to 16 hours. TEM micrographs of Be and Mg implants reveal dislocation loops in the higher dose samples, but not in the lower dose ones. During annealing, the loops grow and decrease in density, eventually disappearing completely from the crystal. This annealing of the loops appears to correlate to the time dependence of the diffusion. This behavior can be explained in terms of the substitutional-interstitial diffusion (SID) mechanism and point defect equilibria.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cunnell, F. A. and Gooch, C. H., J. Phys. Chem. Solids 15, 127 (1960).CrossRefGoogle Scholar
2. Goldstein, B., Phys. Rev. 118, 1024 (1960).CrossRefGoogle Scholar
3. Casey, H. C. and Panish, M. B., Trans. Met. Soc. AIME 242, 406 (1968).Google Scholar
4. Tuck, B., Introduction to Diffusion in Semiconductors, (Pereginus, Stevenage, 1974).Google Scholar
5. McLevige, W. V., Vaidyanathan, K. V., Streetman, B. G., Comas, J. and Plew, L., Sol. State Comm. 25, 1003 (1978).Google Scholar
6. Yeo, Y. K., Park, Y. S., Pedrotti, F. L. and Choe, B. D., J. Appl. Phys. 53, 6148 (1982).Google Scholar
7. Naik, I. A., J. Electrochem Soc. 124, 1270 (1987).Google Scholar
8. Baratte, H., Sadana, D. K., de Souza, J. P., Hallali, P. E., Schad, R. G., Norcott, M. and Cardone, F., J. Appl. Phys. 67, 6589 (1990).Google Scholar
9. Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 996 (1989).CrossRefGoogle Scholar
10. Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 1990 (1989).CrossRefGoogle Scholar
11. Robinson, H. G., Deal, M. D. and Stevenson, D. A., Appl. Phys. Lett. 58, 2800 (1991).CrossRefGoogle Scholar
12. Deal, M. D., Hansen, S. E. and Sigmon, T. W., IEEE Trans. Computer-Aided Design 8, 939 (1989).Google Scholar
13. Robinson, H. G., Deal, M. D. and Stevenson, D. A., Appl. Phys. Lett. 56, 554 (1990).Google Scholar
14. Robinson, H. G., Deal, M. D., Griffin, P. B., Amarantunga, G., Stevenson, D. A. and Plummer, J. D., to be submitted to J. Appl. Phys. (1991).Google Scholar
15. Gösele, U. M., Ann. Rev. Mater. Sci. 18, 257 (1988).CrossRefGoogle Scholar
16. Deal, M. D. and Stevenson, D. A., J. Appl. Phys. 59., 2398 (1986).Google Scholar
17. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
18. Jones, K. S., Allen, E. L., Robinson, H. G., Stevenson, D. A., Deal, M. D. and Plummer, J. D., to be published in J. Appl. Phys. (1991).Google Scholar