Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T11:29:20.972Z Has data issue: false hasContentIssue false

Co/SixGe1-x Alloy Formation on Strained SixGe1-x Layers

Published online by Cambridge University Press:  25 February 2011

M. C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
R. G. Elliman
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
N. Hauser
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
J. -M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada.
T. E. Jackman
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada.
Get access

Abstract

The thermally-induced Co/SixGe1-x reaction has been studied for a series of isochronal (25–600°C/20 min) and isothermal (600°C/u-240 min) annealing sequences using Rutherford backscattering spectrometry, transmission electron microscopy and sheet resistance measurements. Annealing at 600°C yields a reacted surface layer comprised of Si-rich CoSixGe1-x, Ge-rich SiyGe1-y and possibly CoSi2, with the two former constituents exhibiting a degree of epitaxial alignment with the substrate. The formation of Co/SiSixGe1-x alloys is discussed in terms of the ternary phase diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thomas, O., Delage, S., d'Heurle, F. M. and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).Google Scholar
[2] Thomas, O., d'Heurle, F. M., Delage, S. and Scilla, G., Appl. Surf. Sci. 38, 27 (1989).Google Scholar
[3] Thomas, O., d'Heurle, F. M. and Delage, S., J. Mat. Res. 5, 1453 (1990).Google Scholar
[4] Thompson, R. D., Tu, K. N., Angillelo, J., Delage, S. and Iyer, S. S., J. Electrochem. Soc. 135, 3161 (1988).Google Scholar
[5] Buxbaum, A., Eizenberg, M., Raizman, A. and Schaffler, F., Appl. Phys. Lett. 59, 665 (1991).Google Scholar
[6] Liou, H. K., wu, X., Gennser, U., Kesan, V. P., Iyer, S. S., Tu, K. N. and Yang, E.S., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
[7] Hong, Q. Z. and Mayer, J. W., J. Appl. Phys. 66, 611 (1989).Google Scholar
[8] Murarka, S. P., Suicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
[9] Ridgway, M. C., Elliman, R. G., Moss, S., Peterson, P. J., Baribeau, J. -M. and Jackman, T. E., J. Appl. Phys., submitted (1992).Google Scholar
[10] Baribeau, J. -M., Jackman, T. E., Houghton, D. C., Maigne, P. and Denhoff, M. W., J. Appl. Phys. 63, 5738 (1988).Google Scholar
[11] Wald, F. and Michalik, S. J., J. Less-Common Met. 24, 277 (1971).Google Scholar
[12] Krontiras, Ch, Georga, S. N., Sakkopoulos, S., Vitoratos, E. and Salmi, J., J. Phys.: Condens. Mat. 2, 3323 (1990).Google Scholar
[13] Ashburn, S. P., Ozturk, M. C., Wortman, J. J., Harris, G., Honeycutt, J. and Maher, D.M., J. Elec. Mat. 21, 81 (1992).Google Scholar