Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T22:24:46.329Z Has data issue: false hasContentIssue false

Critical Phenomena in Nanoscale Multilayer Materials

Published online by Cambridge University Press:  21 February 2011

T. Tsakalakos
Affiliation:
Dept. of Mechanics and Material Science, Rutgers University, P.O. Box 909, Piscataway, N.J. 08854
A. Jankowski
Affiliation:
Dept. of Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, CA 94550
Get access

Abstract

We present a review of critical phenomena in a variety of nanoscale multilayer materials. Discontinuities of interdiffusitives at low temperatures, “the Supermodulus effect” and the “softening” of elastic constants of fcc-bcc structures, other mechanical properties at critical layer thickness are also presented. Some new calculations of elastic constants of (111) fcc and (110) bcc metallic superlattices show large changes as a function of homogeneous lattice strains. The effect of structural relaxations on a number of electronic and magnetic properties is discussed and a new analytical model is developed to explain the origin of interference effects when interfaces are apart by a few interplanar spacings. This model can predict relaxations at interfaces for a variety of materials including metals, semiconductors and ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “The Structure of Surfaces,” ed. by Hove, M.A. and Tong, S.Y. (1985), Spring Series in Surface Science, Vol.2 (Spring, Berlin).Google Scholar
2. “Interfaces, Superlattices, and Thin Films,” ed. by Dow, J.D., Schuller, I.K. and Hilliard, J.E., Mat. Res. Soc. Proc., Vol 77, (1987) Mat. Res. Soc., Pittsburgh, PA.Google Scholar
3. Yang, W.M. C., Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 48 (1977) 876.CrossRefGoogle Scholar
4. Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M., and Schuller, I.K., Phys. Rev. Lett. 48, 166 (1982).CrossRefGoogle Scholar
5. Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M., and Schuller, I.K., Phys. Rev., B27, 7186 (1983).CrossRefGoogle Scholar
6. Danner, R., Huebener, R.P., Chun, C.S.-L., Grimsditch, M., and Schuller, I.K., Phys. Rev., B33, 3696.Google Scholar
7. “Modulated Structure Materials,” ed. by Tsakalakos, T., Nijoff, Martinus, Dordrecht, 1984.Google Scholar
8. “Synthetic Modulated Structures,” ed. by Chang, L. and Giessen, B., Academic Press, New York, 1985.Google Scholar
9. “Layered Structures and Epitaxy,” Mat. Res. Soc., Symposium Proc. ed. Gibson, J.M., Osbourn, G.C., and Tromp, R.M., Materials Research Society, Pittsburgh, 1986.Google Scholar
10. Papers in this volume.Google Scholar
11. Purdes, A., Ph.D. Thesis, Northwestern University, 1976.Google Scholar
12. Testardi, L.R., Willens, R.H., Krause, J.T., McWhan, D.B. and Nakahara, S., J. Appl. Phys. 52 (1981) 510.Google Scholar
13. Baral, D., Ph.D. Thesis, Northwestern University, Illinois (1983).Google Scholar
14. Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, translated by Lorrain, P. and Lorrain, D. Sainte-Mari (Freeman, San Francisco, 1963).Google Scholar
15. International Tables for X-ray Crystallography (Kynoch, Birmingham 1905).Google Scholar
16. McWhan, D.B., in Synthetic Modulated Structures, ed. by Chang, L. and Giessen, B.C. (Academic, New York, 1985).Google Scholar
17. Tsakalakos, T., to be published.Google Scholar
18. Henein, G.E., Ph.D. Thesis, Northwestern University, 1979.Google Scholar
19. Philofsky, E.M. and Hilliard, J.E., J. Appl. Phys., 43, 2040 (1972).Google Scholar
20. Tsakalakos, T., Ph.D. Thesis, Northwestern University, Illinois (1977).Google Scholar
21. Yang, W.M.C., Ph.D. Thesis, Northwestern University, Evanston, IL, 1970.Google Scholar
22. Tsakalakos, T., Thin Solid Films 86 (1981b) 79.Google Scholar
23. Jankowski, A., Ph.D. Thesis, Rutgers University, New Jersey (1984).Google Scholar
24. Tsakalakos, T., Thin Solid Films 75 (1981a) 293.CrossRefGoogle Scholar
25. Henein, G.E. and Hilliard, J.E., J. Appl. Phys. 54 (1983) 728.Google Scholar
26. Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 54 (1983) 734.Google Scholar
27. Schuller, I.K., Institute of Electrical and Electronic Engineers, 1985, Ultrasonics Symosium, ed. by McAvoy, B.R. (IEEE, New York, 1970).Google Scholar
28. Bisanti, P., Brodsky, M.B., Felcher, G.P., Grimsditch, M. and Sill, L.R., Phys. Rev. B35. 78137819 (1987).Google Scholar
29. Moustakas, T., unpublished work.Google Scholar
30. Tsakalakos, T. and Jankowski, A., to be published.Google Scholar
31. Khachaturyan, A.G., Fiz. Tuerd. Tela, 9, 2595 (1967), Soy. Phys. Solid State (Engl. Transl.) 9, 2040 (1968).Google Scholar
32. Tsakalakos, T. and Khachaturyan, A.G., to be published.Google Scholar
33. “Theory of Structural Transformations in Solids,” Khachaturyan, A.G., John Wiley & Sons, New York, p. 464–420, 1983.Google Scholar
34. Chen, S.P., Voter, A.F. and Albers, R.C., submitted to Physical Review Letters, 1988.Google Scholar
35. Inafuku, M., Susajima, Y., Yamamoto, R. and Doyama, M., J. Phys. F: Met. Phys. 823829 (1986).CrossRefGoogle Scholar
36. Kosticas, A., Simopoulos, A. and Tsakalakos, T., unpublished work.Google Scholar
37. Brodsky, M.B., private communication.Google Scholar