Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T09:57:33.239Z Has data issue: false hasContentIssue false

Cross-Sectional Tem Characterization of Structural Changes Produced In Silicon By One Micron Picosecond Pulses

Published online by Cambridge University Press:  26 February 2011

Arthur L. Smirl
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Ian W. Boyd
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, TX 76203
Thomas F. Boggess
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, TX 76203
Steven C. Moss
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, TX 76203
R.F. Pinizzotto
Affiliation:
Ultrastructure, Inc., 1850 Greenville Ave., Richardson, TX 75081
Get access

Abstract

Plan and cross-sectional transmission electron microscopy (TEM) has been used to examine the various bulk and surface structural changes observed in crystalline silicon following melting caused by the absorption of 1-μm pulses that are 4 ps in duration. We show for the first time that for picosecond excitation polycrystalline Si (p-Si), rather than singlecrystal Si, is always formed when the melt resolidifies. Specifically, cross-sectional TEM analyses indicate that a thin layer of fine-grained p-Si is formed at the interface of the melted region with the bulk. When the incident fluence is more than 10% above the melting threshold, the region between the surface and the fine-grained p-Si regrows as largergrain p-Si. This is the first reported observation of a large-grain p-Si layer on a fine-grain p-Si base in crystalline material. If the incident fluence is less than 10% above threshold, the region near the surface resolidifies as amorphous Si, but the narrow layer of fine-grained p-Si remains at the interface with the single crystal material. Present models for resolidification must be modified to account for these features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, P.L., Yen, R., Bloembergen, N., and Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
2. Cullis, A.G., Webber, H.C., and Chew, N.G., Appl Phys. Lett. 36, 547 (1980).Google Scholar
3. Narayan, J. and White, C.W., Appl. Phys. Lett. 44, 35 (1984).Google Scholar
4. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
5. Cullis, A.G., Chew, N.G., Webber, H.C., and Smith, D.J., J. Crys. Growth 68, 624 (1984).Google Scholar
6. Wood, R.F., Lowndes, D.H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).Google Scholar
7. Cullis, A.G., in Energy Beam-Solid Interactions and Transient Thermal Processing, 1984, edited by Biegelsen, D.K., Rozgony, G.A., and Shank, C.V. (Materials Research Society, Pittsburgh, 1985), p.15.Google Scholar
8. Lowndes, D.H., Jellison, G.E. Jr, Wood, R.F., Pennycook, S.J., and Carpenter, R.W., ibid., p.100. Google Scholar
9. Peercy, P.S. and Thompson, M.O., ibid. p.53.Google Scholar
10. Wood, R.F., Geist, G.A., Solomon, A.D., Lowndes, D.H., and Jellison, G.E. Jr, ibid, p.150.Google Scholar
11. Tsu, R., Hodgson, R.T., Tan, T.Y., and Baglin, J.E., Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
12. Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
13. Liu, P.L., Yen, R., Bloembergen, N., and Hodgson, R.T., in Laser and Electron-Beam Processing of Materials, edited by white, C.W. and Peercy, P.S. (Academic Press, New York, 1980), p.156.CrossRefGoogle Scholar
14. Shank, C.V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 50, 454 (1983).Google Scholar
15. Shank, C.V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 51, 900 (1983).Google Scholar
16. Downer, M.C., Fork, R.L., and Shank, C.V., in Ultrafast Phenomena IV, edited by Auston, D. and Eisenthal, K.B. (Springer, New York, 1984), p. 106.CrossRefGoogle Scholar
17. Gamo, K., Murakami, K., Kawabe, M., Namba, S., and Aoyagi, Y., in Laser and Electron-Beam Interactions and Materials Processing, edited by Gibbons, J.F., Hess, L.D., and Sigmon, T.W. (North-Holland, Amsterdam, 1981), p. 97.Google Scholar
18. Boyd, I.W., Moss, S.C., Boggess, T.F., and Smirl, A.L., Appl. Phys. Lett. 46, 366 (1985).Google Scholar
19. Becker, M.F., Walser, R.M., Ambrose, J.G., and Sheng, D.Y., in Picosecond Phenomena II, edited by Hochsrasser, R.M., Kaiser, W., and Thank, C.V. (Springer Verlag, Berlin, 1980), p.290.Google Scholar
20. Boyd, I.W., Moss, S.C., Boggess, T.F., and Smirl, A.L., Appl. Phys. Lett. 45, 80 (1984).CrossRefGoogle Scholar
21. Boyd, I.W., Moss, S.C., Boggess, T.F., and Smirl, A.L., in Energy Beam Solid Interactions and Transient Thermal Processing, edited by Fan, J.C.C. and Johnson, N.M. (North-Holland, New York, 1984), p.203.Google Scholar
22. Boggess, T.F., Smirl, A.L., Bohnert, K., Mansour, K., Moss, S.C., and Boyd, I.W., IEEE J. Quant. Electron., to be published in 1985.Google Scholar